LECTURE NOTES ON FLUID MECHANICS

4^{TH} SEMESTER
MECHANICAL ENGINEERING

PREPARED BY:-
Mr. B. SAI SANTOSH
LECTURER
GOVT. POLYTECHNIC, KORAPUT

TH-3 FLUID MECHANICS

Name of the Course: Diploma in Mech \& Other Mechanical Allied Branches			
Course code:		Semester	$4^{\text {th }}$
Total Period:	60	Examination	3 hrs
Theory periods:	$4 \mathrm{P} / \mathrm{W}$	Class Test:	20
Maximum marks:	100	End Semester Examination:	80

A. RATIONAL:

Use of fluid in engineering field is of great importance. It is therefore necessary to study the physical properties and characteristics of fluids which have very important application in mechanical and automobile engineering.

B. COURSE OBJECTIVES:

Students will develop an ability towards

- Comprehending fluid properties and their measurements
- Realizing conditions for floatation
- Applying Bernoulli's theorem

C. TOPIC WISE DISTRIBUTION OF PERIODS

Sl. No.

Topic
Properties of Fluid
Fluid Pressure and its measurements
Hydrostatics
Kinematics of Flow orifices, notches \& weirs
Flow through pipe
Impact of jets
Total Period:

Periods

 0808080808101060

D.CONTENT

Properties of Fluid

Define fluid
Description of fluid properties like Density, Specific weight, specific gravity, specific volume and solve simple problems.
Definitions and Units of Dynamic viscosity, kinematic viscosity, surface tension Capillary phenomenon

Fluid Pressure and its measurements

Definitions and units of fluid pressure, pressure intensity and pressure head.
Statement of Pascal's Law.
Concept of atmospheric pressure, gauge pressure, vacuum pressure and absolute pressure
Pressure measuring instruments
Manometers (Simple and Differential)
Bourdon tube pressure gauge(Simple Numerical)
Solve simple problems on Manometer.

Hydrostatics

Definition of hydrostatic pressure
Total pressure and centre of pressure on immersed bodies(Horizontal and Vertical Bodies)
Solve Simple problems.
Archimedes 'principle, concept of buoyancy, meta center and meta centric height (Definition only)

Concept of floatation

Kinematics of Flow

Types of fluid flow
Continuity equation(Statement and proof for one dimensional flow)
Bernoulli's theorem(Statement and proof)
Applications and limitations of Bernoulli's theorem (Venturimeter, pitot tube)
Solve simple problems
Orifices, notches \& weirs
Define orifice
Flow through orifice
Orifices coefficient \& the relation between the orifice coefficients
Classifications of notches \& weirs
Discharge over a rectangular notch or weir
Discharge over a triangular notch or weir
Simple problems on above

Flow through pipe

Definition of pipe.
Loss of energy in pipes.
Head loss due to friction: Darcy's and Chezy's formula (Expression only)
Solve Problems using Darcy's and Chezy's formula.
Hydraulic gradient and total gradient line

Impact of jets

Impact of jet on fixed and moving vertical flat plates
Derivation of work done on series of vanes and condition for maximum efficiency.

Impact of jet on moving curved vanes, illustration using velocity triangles, derivation of work done, efficiency.

CHAPTERS COVERED UP TO IA- $\mathbf{1 , 2 , 3 , 4}$

Learning Resources:

Sl No.	Name of the Book	Author Name	Publisher
1.	Text Book of Fluid Mechanics	R.K.Bansal	Laxmi
2.	Text Book of Fluid Mechanics	R.S khurmi	S.Chand
3.	Text Book of Fluid Mechanics	R.K.Rajput	S.Chand
4.	Text Book of Fluid Mechanics	Modi \& Seth	Rajson's pub. Pvt. It

**

Properties of flump:
(1) Density pr Mass Density :-
\rightarrow Density or mass doninty of a fluid is defined os e the ratio of the mass of a fluid to its volume. Thus mass per unit volume of a fluid is called density. It is denoted by the symbol $f($ rho $)$. The unit of mass density in S.I unit is kg per cubic metre fie. $\mathrm{Kg} / \mathrm{m}^{3}$.
\rightarrow The density of liquid - may be considered as Constant while that of gases changes with the variation of pressure and temperature.
\rightarrow Mathematically, mass density is written as

$$
\rho=\frac{\text { Mass of fluid }}{\text { Volume of fluid }}=\frac{m}{V}
$$

\rightarrow The value of density of water is $1 \mathrm{gm} / \mathrm{cm}^{3} 0 \pi 1000 \mathrm{~kg} / \mathrm{m}^{3}$.
(2) Specific Weight or Weight Density:-
\rightarrow specific weight or weight Density of a fluid is the ratio between the weight of a fluid to its volume. Thus weight pere unit volume of a fluid is called weight density and it is denoted by the symbol w.

$$
\text { Thus mathematically, } \boldsymbol{\omega}=\frac{\text { weight of fluid }}{\text { volume of fluid }}
$$

$$
\begin{aligned}
\text { Here, weight of fluid } & =\text { mass of fluid } \times \text { Acceleration due to } \\
& =m \times g
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \text { Weight Densify }(w)=\frac{m g}{v}=\frac{\text { mass of fluid xg }}{\text { Volume of fluid }} \\
&=0 \times g \\
& \Rightarrow h=f g
\end{aligned}
$$

t The unit of weight density in S.I unit is Newton $/ \mathrm{m}^{3}$.
\rightarrow The value of spactive weight or weight density (ω) fore water is 9.81×1000 Neut ion $/ \mathrm{m}^{3}$ in S.I units.
[3] Specific Volume:-
\rightarrow Specific volume a thud is defined as the volume of a fluid occupied by a unit mass or volume per unit mass of a fluid is called specific volume. Mathematically, it is expressed as

$$
\begin{aligned}
\text { Specific volume } & =\frac{\text { Volume of fluid }}{\text { Mass of fluid }} \\
& =\frac{1}{\frac{\text { Mass of fluid }}{\text { volume of third }}}=\frac{1}{f}
\end{aligned}
$$

$\rightarrow 7$ hus spectic volume is the reciprocal of mass density. \rightarrow It is expressed as $\mathrm{m}^{3} / \mathrm{kg}$.
\rightarrow It is Commonly applied to gases.
[4] Specific Gravity:-
\rightarrow Specific gravity is defined as the ratio of the weight densify (or density) of a fluid to the weight density (ore density) of a standard staid. For liquids, the standard fluid is taken water and fore gases, the standard fluid is than wire. Specific grouty is also called relative density. It is dimensionless quantity and is denoted by the symbol S.

$$
\begin{aligned}
\text { Mathernatically, } S(\text { fore liquids }) & =\frac{\text { weight density of liquid }}{\text { wright density of woutere }} \\
S(\text { for gases })= & \frac{\text { weight density of gas }}{\text { weight density of cire }} \\
\text { Thus weight density of a liquid } & =S \times \text { weight density of water } \\
& =S \times 1000 \times 9.81 \mathrm{~N}^{3} \mathrm{~m}^{3}
\end{aligned}
$$

The density of a liquid $=S \times$ Density of water

$$
=5 \times 1000 \mathrm{~kg} / \mathrm{mm}^{3}
$$

Density of standard liquid $=\frac{I_{Q} g}{I_{n} g}=\frac{8_{0}}{I_{\omega}}$

$$
\begin{aligned}
& \Rightarrow S=\frac{\rho l}{f \omega} \\
& \Rightarrow l=S \times f \omega
\end{aligned}
$$

If the specific gravity of fluid is known, then the density of the Hid will be equal to specific symovity of fred multiplies by the density of water , For example, the specific gravity wo mercury

$$
\Rightarrow S H g
$$

\ldots VISCOSITY
\rightarrow Miscocity is defined as the property of a fud which offers resistance te the movement of one layer of fluxed over another adjacent lager of the fluid.
\rightarrow Whom two layers of a fituird, a distance dy apart, move one oven the othore at different velocities, say u and utalu as shown in bigure, the Viscosity together e with relative velocity causes a shear stress acting between the fluid layers.
\rightarrow The top lower causes a shear stress on the adjacent lower layer while the lower layer conses a shear stress on the adjacent top loge. This shear stress is proportional to the rate of change of velocity with respect. to y. If is denoted by symbol c (Tare).
 $\binom{$ Velocity vaniathan Nears a solid }{ bounciory } Mothomeducally, $Z \alpha \frac{d u}{d y} \Rightarrow t=\mu \frac{d y}{d y}$
v. Angers μ is the constant po peoporctenality and is known of the sosetwers of dumamit Viscosity ore only viscosity,
$\frac{d u}{d y}$ eepreikente the rete of shear striven on reade of she ore deformation on velocity gracadient.

$$
\text { from eqn(1,t) we have, } H=\frac{\tau}{\left(\frac{d u}{d_{y}}\right)}
$$

Thus Viscosity is also defined as the Shear stress required to proctuce unit rote of Shear strain

Here $C=\frac{\text { Force }}{\text { Aria }}=\sqrt[N / m^{2}]{ }$

$$
\begin{aligned}
\mu & =\frac{\operatorname{Force}}{\text { Area }} \div \frac{d u}{d y} \\
& =N / m^{2} \times \frac{d y}{d u}=\frac{N}{m^{2}} \times \frac{m}{m / s}=\frac{N \cdot S}{m^{2}}
\end{aligned}
$$

Si unit of viscosity $=\mathrm{NS} / \mathrm{m}^{2}=12 \mathrm{~S}$.

$$
=\frac{\text { Necston }+S Q 0}{m^{2}}
$$

$$
\begin{aligned}
\text { Acceleration } & =\frac{\text { Speed }}{\text { Sec }} \\
\text { or speed } & =m / \mathrm{sec} \quad \text { \& } g=\frac{\mathrm{m} / \mathrm{sec}}{\mathrm{soc}} \\
& \rightarrow \mathrm{~g} \mathrm{~g}=\mathrm{m} / \mathrm{sec}^{2}
\end{aligned}
$$

Then, $f=\frac{N \cdot S}{m^{2}}$

$$
\begin{aligned}
& \Rightarrow \mu=\frac{k g \frac{m}{s^{2}} \times s}{m^{2}} \\
& \Rightarrow \mu=k g / m \cdot s
\end{aligned}
$$

The unit rif viscosity in cess is also called poise which is equal tip $\frac{d y n e-s e e}{\operatorname{cm}^{2}}$.

The numerical conversion of the una of viscosity from Mas witt to Cos unit is given below.

$$
\begin{aligned}
& \text { But } 1 \text { Norton }=\text { ono } \mathrm{kg}(\text { mass }) \times \text { one } \frac{m}{\Delta x^{2}} \text { (acceleration) } \\
& =\frac{1000 \mathrm{gm} \times 100 \mathrm{~m}}{\mathrm{sec}^{2}}=1000 \times 100 \frac{\mathrm{gm}-\cos }{\mathrm{sec}^{2}} \\
& =1000 \times 100 \text { dyne } \\
& \text { the } \frac{k g f s e c}{m^{2}}=9.81 \times 100000 \frac{d y n e-s e c}{\mathrm{~cm}^{2}} \\
& =9.81 \times 0000 \frac{d_{1-2}-\operatorname{cec}}{100 \times 100 \times \mathrm{cm}^{2}} \\
& =4 \operatorname{cog} \operatorname{ag} \cdot \frac{\mathrm{dmp}+\sec }{\mathrm{cm}^{2}}=98-1 \text { horse }
\end{aligned}
$$

Thus fore solving numerical, problems, is viscocfyg is given? in poise, it must be alridided by acer to get its equivalent value in ohs.
But one $=\frac{k g b-s e c}{m^{2}}=\frac{981 \mathrm{Ns}}{m^{2}}=98.1$ prise

$$
\begin{aligned}
& \text { one Ns } \\
& m^{2}=\frac{9801}{9.81} \text { prise }=10 \text { poise } \\
& \Rightarrow 1 \text { perse }=\frac{1}{10} \frac{\mathrm{NS}}{\mathrm{~m}^{2}}
\end{aligned}
$$

KINEMATLC VIScosITY 7
It is defined as the ratio between the dynamic viscocty and density of fluid. Rt is denoted by Greek symbol (V) called nu". Thus mathematically.

$$
V=\frac{\text { Viscosity }}{\text { Density }}=\frac{\mu_{p}}{p}
$$

The units of kinematic viscosity is Doterined as

$$
\begin{aligned}
& =\frac{\text { Mobs } \times \frac{\text { (length }}{(\text { Time })^{2}} \times \text { Time }}{\left(\frac{\text { Muss }}{\text { Length }}\right)_{\text {S. Force }}=}
\end{aligned}
$$

In lats and Si l, the unit of Kinematic viscosity is matres $/ \mathrm{sec}$ on $\mathrm{m}^{2} / \mathrm{sic}$ while in CGS units it is written as $\mathrm{Cm}^{2} / \mathrm{s}$.

In COS units, kinematic Viscosity is cello known as stroke.

$$
\text { Thus, One Stroke }=c m^{2} / s=\left(\frac{1}{100}\right)^{2} \mathrm{~m}^{2} / \mathrm{s}=10^{-4 m^{2}} / \mathrm{s}
$$

Centriole means $=\frac{1}{100}$ stoke
SURFACE TENSION AND CAPILLARITY
Surffece rension is defined as the tensile force acting on the Surface of a liopiol in contact with a gas ort on the surface between two immiscible liquids such that the contact surface behaves like a membrane under tension. The magnitude of this force pere unit length of the free surface will hove the same value os the surigace energy per unit eras It is denoted by Greek letter 6 (coaled sigma). In MkS units, it is expressed as kgt/m white in st units as N / m.

SURFACE TENSION ON LIQUID DROPLET \Rightarrow
Consider a small spherical droplet of a liquid of radius n. On the entice surface of the droplet, the tensile force due to surface tension will be acting.

Lot $\sigma=$ suestace tension of the liquid
$P=$ Pressure intensity incicle the droplet (in excess of the outside preserve intensity)

$$
d=\text { Dia of droplet }
$$

Let the droplet is cut into two haves. The forces acting bo one half (say left half) will be
(7) Tensile force due to surface tension acting around the encumbercence of the cut portion as show, in figure. and this is equal to $=0 \times$ circenmerence

$$
=5 \times \pi d
$$

(ii) Pressure force e on the area $\frac{\pi}{4} d^{2}=p \times \frac{\pi}{4} d^{2}$ as shaw in figure, These two forces will be equal and opposite under equalorinim conditions. Tie.

$$
\begin{array}{r}
P \times \frac{\pi}{4} d^{2}=6 \times \pi d \\
P=\frac{6 \times \pi d}{\frac{\pi}{4} \times d^{2}}=\frac{46}{d}
\end{array}
$$

The above equation shows that with the decrease of diameter of the droplet, pressure intensity inside the droplet increases.
(a) Droplet

(B) Eluriface Tension (FORCES ON DROPLET)

(C) Pressinite forces
$\underbrace{\text { SURFACE TENSION ON A LIQUID JET }} \Rightarrow$
Consider a liquid jet of diameter 'od' and length ' L ' as shown in Figure.
Let $P=$ pressure intensity inside the liquid jet above the outside pressure .
$\sigma=$ surface tension of the liquid Consider e the equilibrium of the Semi set, wa have force due to

$$
\begin{aligned}
\text { Pressure } & =P \times \text { area bf semi jet } \\
& =P \times \text { ted }
\end{aligned}
$$

(a)
$\binom{$ FIVES ON LIQUID }{ JET }

Force due to surface tension $=9 \times 2 L$

Equating the forces, we have

$$
\begin{aligned}
& p \times L \times d=\sigma \times 2 L \\
& \Rightarrow P=\frac{G \times 2 L}{L \times d}
\end{aligned}
$$

SURFACE TENSION ON A HOLLOW BUBBLE $=7$
A Hollow bubble like a soap bubble in air has two surfaces in contact with air, oneinside and other outside. Thus two surfocies are subjected to surface tension. In such case, we have

$$
\begin{aligned}
P \times \frac{\pi}{4} d^{2} & =2 \times\left(0 \times \pi d^{2}\right. \\
\Rightarrow P & =\frac{2 \sigma \pi d}{\frac{\pi}{4} d 2}=\frac{8 \pi}{d}
\end{aligned}
$$

- CAPILLARITY:-
\rightarrow Capillarity is ofefined ass a phenomenon of ruse ore fall of a liquid surface in a small tube relative to the adjacent general level of liquid when the tube is held vertically in the liquid.
\rightarrow The rise of liquid surface is known as Capillary rise while the fall of the lipid surface is known as capillarydepression.
\rightarrow It is expressed in terms of Cm on mm of liquid. Its value depends upon the specifier weight of the liquids, diameter e of the tube and surface tension of the liquid.

Expression for Capillary Rise:-
Consider a glass tube of small diameter 'd'opened oft both ends and is inserted in a liquicf, say waters. The ligand wall rise in the tube above the level of the liquid.
Let $h=$ height of the liquid in the tube. Under a state. of aquilobrian, the wright of illiquid of height h is balanced by the force of the surgesce of the liagided in the tube. But the force et the surface of the liquid in the tube is tue to surbase tension.

L jet $G=$ surface tensing of liquid $\theta=$ Angle of contact between liquid and ollas tube
The wright of liquid of height

$$
\left.\begin{array}{rl}
h \text { in the tube } & =(\text { ATen of tube } \times h) \\
\times p \times g
\end{array}\right)
$$

where $P=$ Density of liquid
(CAPILLARY RISE)
Vertical component of the surface tensile force

$$
\begin{align*}
& =(\sigma \times \operatorname{circcumference}) \times \cos \theta \\
& =\sigma \times \text { ad } \times \cos \theta \tag{2}
\end{align*}
$$

For equilibrium, equating (i) \& (2), we get

$$
\begin{align*}
& \frac{\pi}{4} d^{2} h p \%=\sigma \times \pi d \times \cos \theta \\
& \Rightarrow h=\frac{\sigma \times \pi d \times \cos \theta}{\frac{\pi}{4} d^{2} \times p \times y}=\frac{4 \pi \cos \theta}{p \times g \times d} \tag{3}
\end{align*}
$$

0π
The value of θ between water and clean glass tube is approximately equal to zero and hence $\cos \theta$ is equal to unity. Then rise of water is given by

$$
\begin{equation*}
h=\frac{4 \sigma}{p x g x d} \tag{4}
\end{equation*}
$$

Exprassion for Capillary Fall:-
If the glass tube is dipped in mercliong, the level of mercury in the trull will be lower than the general level of the outside liquid as shown in the figure.
Let W =Height of depression in tube
Then in equilibrium, two forces are acting on the mercury inside the tube. First one is due to surface tension acting in The downward direction and is equal to $F \times d d x \cos \theta$.

Second force is due to hydrostatic force acting upward and is equal to intensity of pressure at a depth' $1 \times$ Area

$$
\begin{gathered}
=p \times \frac{\pi}{4} d^{2}=p g \times h \times \frac{\pi}{4} d^{2} \\
(\because p=p g h)
\end{gathered}
$$

Equating the two, we get

$$
\begin{aligned}
& G \times \pi d \times \cos \theta=p g h \times \frac{\pi}{4} d^{2} \\
\Rightarrow & h=\frac{4 \theta \cos \theta}{p g d}
\end{aligned}
$$

\therefore Value of θ for mercury and glass tube is 128°.

(CAPILLARY FALL)

FLUID PRESSURE AT A Pony CHAPTER-O2
Consider a small Area da in large mass of fluid. If the fluid is stationary, then the force exerted by the surrounding fluid on the area da will delwaye be perpendicular e to the surface $d A$. Let $d F$ is the force acting on the area $d A$ in the normal direction. Then the ratio of $\frac{d F}{d A}$ is known as the intensity of Pressure se simply pressure and this ration is represented by P. Hence mathematically the pressure at a point in a fred at rest is

$$
P=\frac{d F}{d A}
$$

If the Force (F) is uniforming distributed over the Area (A), then pressure at any point is given by

$$
P=\frac{F}{A}=\frac{\text { fincte }}{\text { Area }}
$$

\therefore Force ore pressure force, $F=P \times A$.
The urolts of Pressure are :(i) $\mathrm{kgf} / \mathrm{m}^{2}$ and $\mathrm{kgs} / \mathrm{cm}^{2}$ in MKs unit.
(ii) New on $/ \mathrm{m}^{2}$ or $\mathrm{N} / \mathrm{m}^{2}$ and $\mathrm{N} / \mathrm{mm}^{2}$ in $S I$ unto.
$\mathrm{N} / \mathrm{m}^{2}$ is known as pascal and is represented by Pa .

Other Commonly used units of pressure are:-

$$
\begin{aligned}
& k_{p a}=k / 0 \text { pascal }=1000 \mathrm{~N} / \mathrm{m}^{2} \\
& \text { bar }=100 \mathrm{kpa}=10^{5} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

PASCALS (AW) \Rightarrow
It states that the pressure or intensity of pressure at a point in a static fluid is equal in all directions. This is proved as:

The fluid element is of very small dimensions. ie. $d x, d y$ and $d s$.

Consider an arbitrary fluid element of wedge shape in a fluid mass at rest as shown in figure. Let the width of the element pirependecular to the plane of paper is unity and $p_{x} x$, Dy and P_{r} are the pressures or intensity of pressure acting on the face $A B, A C$ and $B C$ respectively, i
Let $\angle A B C=\theta$, then the forces acting on the element are:
(1) Pressure forces normal to the surfaces and
(2) Wright of element in the vertical direction.

The forces on the faces are:-
Force on the face $A B=P_{x} \times$ Area of face $A B$

$$
=p_{x} \times d y \times 1
$$

Similarly force in the face $A C=p_{y} \times d x \times 1$
force on the face $B C=P_{2} \times d s \times 1$

$$
\begin{aligned}
\text { weight of element } & =(\text { Mass of element }) \times g \\
& =(\text { Volume } \times p) \times g \\
& =\left(\frac{A B \times A C}{2} \times 1\right) \times p \times g
\end{aligned}
$$

where $f=$ density of third
Resolving the forces in x-direction, we have

$$
\begin{aligned}
& P_{x} \times d y \times 1-P(d s \times 1) \sin \left(90^{\circ}-0\right)=0 \\
& P_{x} \times d y \times 1-P_{z} d s \times 1 \cos \theta=0
\end{aligned}
$$

or But from figure, $d s \cos \theta=A B=d y$

$$
\begin{aligned}
& P_{x} \times d y \times 1-P_{2} \times d y \times 1=0 \\
& P_{x}=P_{2}
\end{aligned}
$$

or smitarty, resolving the forces in 4 -direction, we get

$$
\begin{gathered}
P_{y} \times d \times \times 1-P_{2} \times d \leq \times 1 \cos \left(90^{\circ}-\theta\right)-\frac{d \times}{} \times d y \\
\Rightarrow P_{y} d x+P_{2} d s \sin \theta-\frac{d x d y}{2} \times p \times y=0
\end{gathered}
$$

OR/. Let the width of the elements is 1 Hence
the area of force D face $A B=d y \times 1$ ($F A B=P y \times d y x)$)
area of force on face $A C=d x \times 1 \quad(F A C=p x \times d x \times 1)$
area of force on face $B C=$ dots $\left.x_{1}\left(F_{B C}=p_{2} \times d x a\right)\right)$
Wright of element $=$ (mass of element) $\times g$

$$
\begin{aligned}
& =\rho \times \text { values } \times g \\
& =f \times\left(\frac{1}{2} A C \times A B \times 1\right) \times g
\end{aligned}
$$

Fore equilibrium
Considering the body at equithrium
Resolving the left and right forces.

$$
\begin{aligned}
& F_{A B}=F_{B C} \operatorname{Cos} \theta \\
& \Rightarrow P_{y} \cdot d y \cdot A=P_{z} \cdot d s \mid \cos O \\
& \Rightarrow P_{y} \cdot d y=P_{z} \cdot d c \cos \theta \\
& \Rightarrow \cos \theta=\frac{A B}{A C} \times \frac{d y}{d s} \\
& \Rightarrow d s \cos \theta=d y
\end{aligned}
$$

Applying this in the equation

$$
\begin{align*}
& P y \cdot d y=P z \cdot d y \\
& \Rightarrow P_{y}=P_{2} \tag{10}\\
& \text { Resolving the up forests and dean cortes } \\
& F A C=F_{B C} \cdot \sin \theta+\infty \\
& \Rightarrow P_{x} d x \cdot 1=P_{2} d s\left(. \sin s+y x\left(\frac{1}{2}-d x \cdot d y \cdot 1\right) \times g\right. \\
& \Rightarrow P_{x} d_{x}=P_{2} d s \sin s+f g \frac{d x d y}{2}
\end{align*}
$$

as $d x$. dy will be very small. Here 7 can bs neglected.
Applying in the equation

$$
\begin{align*}
& P_{x} d_{x}=P_{z} d_{t} \\
& \Rightarrow P_{x}=P_{z} \\
\therefore P_{x} & =P_{y}=P_{z} \tag{2}
\end{align*}
$$

PRESSURE HEAD \& HYDROSTATIC LAW: \rightarrow
The pressure at any point ir a ffuict at rest is objected by the Hydrostatic Law which stacte Fiat the races of increase of pressure in a vertical olbwisward direction rust be equal to the weight density of the fluid of the point 1 Let $\triangle A=$ cross suctional treas $\Delta Z=$ Height of fluid element $P=$ pressure on face $A B$
$Z=$ Distance of fluid element fem free surface $\omega=$ wright density of Hues

Free surface of the id

For equilibrium

$$
\begin{aligned}
& \omega+(p \times \Delta A)=\left(p+\frac{d p}{d z} \Delta z\right) \Delta A \\
\Rightarrow & {[f(\Delta A+\Delta z) g]+P * \Delta A=\left(P+\frac{d p}{d z}\right) \Delta z \cdot \Delta A } \\
\Rightarrow & f \Delta A \cdot \Delta z g+p \cdot \Delta A=P \Delta A+\frac{d p}{d z} \cdot \Delta z \cdot \Delta A \\
\Rightarrow & f \cdot \Delta A \cdot \Delta z g=\frac{d p}{d z} \cdot \Delta z \cdot \Delta A \\
\Rightarrow & f g=\frac{d p}{d z}
\end{aligned}
$$

This equation is known as Hydrostatic Law.

$$
\begin{aligned}
\frac{d p}{d z} & =f g \\
\Rightarrow & \int d p
\end{aligned}=\int \rho g d z \quad\left(\because z=\frac{p}{f g}\right)
$$

TyPES of PRESSURES:-
\rightarrow The pressure on a fluid is measured in two different systems. In one system, it is measured above the absolute Zero ore Complete, vacuum and it is called the absolute pressure and in other system pressure is measured above the atmospheric pressure and it is called grange pressure.
\rightarrow There are different types of pressure in throe system.
(i) Absolute pressure
(2) Gauge pressure
(3) Vacuum pressure
(1) Absolute Pressure e \Rightarrow

It is defined as the pressure which is measured with reference to edosolute vacuron pressure.
(3) Gauge Pressures \Rightarrow

It is defined es the pressure which is measured with the help of a pressure measuring instrument, in which the atmospheric pressure is taken as clatum. The atmospheric pressure on the scale is marked as Zero.
(3) Vacuum $\underbrace{p \pi e s s u r e} \Rightarrow$

It is defined as the pressure below the atmospheric pressure.
The relationship between the absolute pressure gauge Pressure and vacuum pressure are shown in figure below. Mathematic ally,
(i) Absolute pressure $=$ Gauge pressure + Atmospheric ore $P_{\text {abs }}=P_{\text {ain }}+P_{\text {gauge }}$
(ii) Vacuum pressure $=$ Atmospheric pressure - Absolute prosfore

$$
\Rightarrow P_{v a l}=P_{a t m}-P_{a b}
$$

[Relationship between pressures]
MEASUREMENT OF PRESSURE \Rightarrow
The pressure of a fluid is measured by the following devices:

1. Manometers 2. Mechanical Gauges
(1) MANOMETERS $\underbrace{7}$

Manometers are defined as the devices used bor measuring the pressure at a port in a fluid by balancing the column of fount by the same or another column of the fluid. They are classified as :-
(a) Simple manometers
(b) Differential manometers
(2) MECHANICAL GमUGES \Rightarrow
trechanical Gauges ares defined as the devices used for measuring the pressure by bedancing the fluid column by the spring ore dead weight. The commonly used mechanical pressure paries are :-
(a) Diaphragm pressure gouge
(c) Dead-werght pressure grope
(b) Bourdon tribe pressure gauge
(d) Bellows pressure gouge

Problems it
Q. 1 Calculate the density, specific weight and weight of 1 lit p petrol of specific gravity 0.7 ?
(ts) $f=$?

$$
\begin{aligned}
& \omega=? \\
& w=\text { ? } \\
& v=1 \mathrm{ld}=10^{-3} \mathrm{~cm}^{3} / 10^{3} \mathrm{~cm}^{3} \\
& s=0.7
\end{aligned}
$$

$$
\begin{align*}
& \Rightarrow S=\frac{f 1 \mathrm{kq}}{1000 \mathrm{~kg} / \mathrm{m}^{3}} \\
& \Rightarrow 0.7=\frac{f \mathrm{licg}}{1000 \mathrm{kghers}} \\
& 3 f \mathrm{liq}=3 \times 10.7 \times 1000=700 \\
& \omega=f \times g=700 \times 9.81=6867 \mathrm{~N} / \mathrm{m}^{3} \\
& \omega=m g \\
& =f \times v \times g \\
& =700 \times \mathrm{V} \times 9.8=700 \times 10^{-3} \times 9.81 \\
& \omega=\omega \times \mathrm{vol} \\
& =8867 \times 10^{-3}=6.867 \mathrm{~N} \tag{An}
\end{align*}
$$

Q. 2 Two horizontal plate are place 1.25 cm apart from each other \& the space between them is filled with oil of
viscosity 14 poise. Calculate the shear stress in oil if the upper plate is moving with a velocity of $2.5 \mathrm{~m} / \mathrm{s}$.

Ans

$$
\begin{aligned}
d y & =1.25 \mathrm{~cm}=1.25 \times 10^{-2} \mathrm{~m} \\
N & =14 \text { poise }=14 / 10=1.4 \mathrm{~N} / \mathrm{m}^{2} \\
V_{2} & =25 \mathrm{~m} / \mathrm{s} \\
y_{1} & =0 \\
z= & =\frac{d u}{d y}=1.4 \times \frac{25}{1.25 \times 10^{-2}} \\
& =280 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Q. 3 Find the kinametic viscosity \& specific gravity of an oil having density of $981 \mathrm{~kg}_{\mathrm{m}} \mathrm{m}^{3}$. The shear stress at a point in oil is $0.2452 \mathrm{~N} / \mathrm{m}^{2} \&$ velocity gradient is given by $0.2 / \mathrm{sec}$:
(n)

$$
\begin{align*}
& f=981 \mathrm{~kg} / \mathrm{mp}^{3} \\
& r=0.2452 \mathrm{~N} / \mathrm{m}^{2} \quad v=? \\
& \frac{d u}{d y}=0.2 / \mathrm{sec} \\
& v=\frac{\mu}{T} \\
& \Rightarrow \mu=r / \frac{d u}{d y}=\frac{0.2452}{0.2}=1226 \mathrm{NS} / \mathrm{ma}^{2} \\
& V=4 / \rho \\
& =\frac{1226}{981}=0.001249 \mathrm{~m}^{2} \mathrm{~s} \\
& S=\frac{P 12.49 \text { stank e }}{\rho_{\text {water }}}=\frac{981}{1000}=0.981
\end{align*}
$$

Q. 4 The velocity distribution dor filum over a flat plate is given by $u=3 / 4 y-y^{2}$ in which U is the velocity in $\mathrm{m} / \mathrm{s} 2 y$ is the distance in metres above the plate Determine the shear stress at $y=1.5 \mathrm{~m}$ \& the dynamic viscosity at 8.6 poise
(A 25)

$$
\begin{array}{ll}
U=\frac{3}{4} y-y^{2} & \mu=8.6 \text { poise }=\frac{8.6}{10}=0.86 \mathrm{Ns} / \mathrm{m}^{2} \\
\frac{d u}{d y}=\frac{3}{4}-2 y & y=1.5 \mathrm{~m}
\end{array}
$$

9. $\frac{d x}{d y}$ at $y=1.5 \mathrm{~m}$

Then, $\frac{d u}{d y}=\frac{3}{4}-2(1.5)=\frac{3}{4}-3=\frac{3-12}{4}=-\frac{9}{4}=-2.25$

$$
\begin{aligned}
\tau=\mu\left(\frac{d y}{d y}\right)=\frac{.6}{10} x-2.25 & =0.56 \times(-2.25) \\
& =-1.935 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

(any)
: SIMPLE MANOMETERS:
A simple manometer consists of a glass tube having one of its ends connected to a point where prassare is to be measured and other and remains open to atinosphere. Common types of simple manometers are:-
(1) Fiezometere.
(2) U-tube manometer and
(3) Single column mamometore.

1) PLEZOMETER \Rightarrow

It is the simplest form of manometer used fore measuring gauge pressures. Die end of this manometer is connected to the point where pressure is to be measured and other and is open to the atmosphere as shown in figure,
Af a the ruse of liquid gives the pressure head af that point. If att a point A, the height of liquid soy wow water is h in piezometer tube, then pressure at

$$
A=P \times g \times h \frac{N}{m^{2}}
$$

(2) D-TUBE MANOMETER \Rightarrow

It consists of glass tube bent in 1 -shape, one end of which is connected to a point of which poresiures is to be measured, and other and remains open to the atmosphere as shown in the figure. The tube generally contains mercury ore any other liquid whose specific gravity is greater than the specific gravity
T) the liquid whose pressure is to be measured.

(a) For Gauge pressure
(b) For Vacuum pressure
(e) For GAUGE PRESSURE $\underbrace{\text { (A) }} 7$

Let B is the paint at which pressure is to be mensured, whose value is P. The datum line is $A-A$.

Let $h_{1}=$ height of tight liquid above the datum line
$h_{2}=$ height of heavy liquid above the datum line
$S_{1}=$ specific gravity of agha liquid
$f_{i}=$ Density of light 1 quad $=1000 \times s_{1}$
$s_{2}=$ specific grandly of heavy liquid
$P_{2}=$ Density of heavy liquid $=1000 \times S_{2}$
As the pressure is the same fore the horizontal surface, Howe Preveree above the horizontal datum line A - A in the left crate and in the right colum of V tube manometers. Should he some

Pressure above $A-A$ in the eff column $=p+f_{f} \times g_{x} h_{1}$
pressure above A-A in the right column $=p_{2} \times g \times h_{2}$

Hence revering the two peassuress,

$$
\begin{align*}
& p+p_{1} g h_{1}=p_{2} g h_{2} \\
\Rightarrow & P=p_{2} g h_{2}-p_{1} g h_{1} \tag{1}
\end{align*}
$$

(B) FOR VACUUM PRESSURE \Rightarrow

For measuring vacuum pressure, the level of the heavy higher in the manometer will be as shown in the above figures.
Then pressure above A-A in the left column $=q_{2} g_{h_{2}}+p_{1} g^{\prime} h_{1}+p$
pressure head in the right colvan above $A-A=0$
\therefore Hind $p_{2} g h_{2}+p_{1} g h_{1}+p=0$

$$
\begin{equation*}
\Rightarrow p=-\left(g_{2} g h_{2}+f_{1} g h_{1}\right) \tag{2}
\end{equation*}
$$

[3] SUNqLE COLUMN MANONETER \Rightarrow
Single Column manometer is a modified form of a U-tube manometers in which a reserciore, having a large cross-sectional area (about too times) as compared to the area of the tube is Connected to one of the limbs (say left (mas) of the manometers as shown in figure. Due to large crust-sectionat area of the reservior, bore any variation in pressure, the change it the liquid level in the reservaite will be very smatl which maybe neglected and fence the pressure is given by the height of liquid in the other limb. The other limb may be vertied ore inclined. Thus there are two types of single column manometer as:
(1) Vertical single Cilurry inaroineterc
(2) Inclined single column manometer
(1) VERTICAL SINGLE COLUMN MANNDAETER ?

Tho bigerce shows the vertical single column manometer, Let $X-X$ bo the datwon lone in the reservoir and in the eight lings of the manometer, when it is not connected to the pipe, when the manometer is connected to the pipe, due to high pressure at A, the heavy locquid in the reservolice will be pushed downing. and will rise in the right limb.
Lat $\Delta h=$ fall of heavy liquid in rékeriviare.
h_{2} =Rise of heavy liquid in right limb
$h_{1}=$ Height of centre of pipe above $X-X$
$P_{A}=p$ ressuce at A, which is to be measured
$A=$ - eros. sectional Area of the reservelve

$a=$ Croes-sectional $\operatorname{arcza} x$ of the right limb
$s_{i}=s p \cdot g r a v i t y$ of liquid in pipe

$S_{2}=s_{p}$ gravity of hang liquid in reservore and right limb
$P_{1}=$ Density of liquid in pipe
$f_{2}=$ Denaty of liegaid in reservoir
Fall of heavy liquid in reservion will cause a rise of heavy liquid level in the right limbs,

$$
\begin{align*}
& A \times \Delta h=a \times h_{2} \\
\Rightarrow & \Delta h=\frac{a \times h_{2}}{A} \tag{1}
\end{align*}
$$

Now consider the datum lino $y-y$ as shown in figure, then pressure in the right limb above $y-y$.

$$
=f_{2} \times g \times\left(\Delta h+h_{2}\right)
$$

pressure in the left limb above $y-y=f_{1} \times g \times\left(\Delta h+h_{1}\right)$ \& P_{A}

Equating the pressures, we have

$$
\begin{aligned}
& f_{2} \times g \times\left(\Delta h+h_{2}\right)=P_{1} \times g \times\left(\Delta h+h_{1}\right)+p_{A} \\
& \Rightarrow P_{A}=P_{2} g\left(\Delta h+h_{2}\right)-p_{1} g\left(\Delta h+h_{1}\right) \\
&= \Delta h\left(p_{2} g-P_{1} g\right)+h_{2} p_{2} g-h_{1} f_{1} g
\end{aligned}
$$

But from equation (i) : $\Delta h=\frac{a \times h_{2}}{A}$

$$
\Rightarrow P_{A}=\frac{a \times h_{2}}{A}\left[p_{2} g-f_{1} g\right]+h_{2} p_{2} g-h_{1} f_{1} g
$$

As the area A is very targe as compared to a, hence ratio $\frac{a}{A}$ becomes very small and can be neglected.
Then $P_{A}=h_{2} P_{2} g-h_{1} f_{1} g$.
fromitioquation rit is clare the at as h_{1} is known and hence. by knowing h_{2} on rise of heavy liquid in the right limb, the Pressure at A can be Calarlatederd.
(2] INCLINED SINGLE CDLUMN MANDMETER \Rightarrow

The figure shows the inclined single column manometers. This manometer is more sensitive. Due to inclination the distance moved by the heavy liquid on the right tors will be mere.

Let $L=$ length of heavy liquid moved in right limb from $x-x$
$\theta=$ Inclination of right limb with horizontal
$h_{12}=v_{u n g}$ cal rose of hoary liquid in right limb from $X-X$ res $=L \times \sin S^{\circ}$
from equation, the pressure at A is

$$
\eta_{n}=h_{2} f_{2} g-h_{1} f_{1} g
$$

substituting the value of h_{2}, we get

$$
P_{A}=\sin \theta \times P_{2} g-h_{1} p_{1} g
$$

- DIFFERENTIAL MANOMETERS:-T

Differential manometers are the devices used for measuring the difference of pressures between two points in a pipe or in two different pipes. A differential manometer consists of a U-tube, containing a heavy liquid, whose two ends are connected to the points, whose afferernce of pressure is to be ronesurced. Most cornminty types of differential manometers are:-
(1) U-tube airfgerential manometer and
(3) Inverted U-tube differential manometer.
(1) U-TUBE DIEEERENTIAL MANOMETER \Rightarrow

The figures shows the differential manometers of U-twbo type.

(a) Two pipes of dakbercent levels

(b) A and B are at-rame level

Tn figure (a) the two points A and B are at different level and also content logecins, of dyberent specify gravity, These points are connected to the U-fulas difeersutial manometer, let the pressure al A and B ans P_{a} and P_{B}

Let $h=$ Deference of merecoty level in the V-tube,
$y=$ Distance of the centre of B, from tho merceuing loved in the right limb
$X=$ Distance of the centre of A, from the misecury level in the right limb
$f_{1}=$ Density of logion of A.
$f_{2}=$ Density of loguiel at B
$f_{g}=$ Density of heavy liquid of merecrimy
Taken datum line of $x-x$.
Pressure above $x-x$ in the left $\operatorname{tin} b=f_{1} g(h+x)+P_{A}$
Where $P_{A}=$ Pressure at A.
Pressock above $x-x$ in the right limb $=P_{g} \times g \times h+P_{2} \times g \times y+P_{B}$ wheres $P_{B}=$ pressure of B,

Equating the two pressure, we have

$$
\begin{aligned}
f_{1} g(h+x)+P_{A} & =f_{g} \times g x h+P_{2} g y+P_{B} \\
\Rightarrow P_{A}-P_{B} & =f_{g} \times g \times h x+P_{2} g y-f_{1} g(h+x) \\
& =h \times g\left(f_{g}-P_{1}\right)+P_{2} g y-P_{1} g x
\end{aligned}
$$

Deference of Pressuaz at A and $B=$

$$
h \times g\left(f_{0}-f_{1}\right)+\rho_{2} g y-f_{1} g x
$$

In figure (b), the two points it and B are et the same level and contains the Same licked of density ρ_{1}, then
Pressure above $x-x$ in rath limb $=\operatorname{fg} \times \operatorname{gon} \times h+P_{1} \times g \times x+P_{B}$
Pressure above $x-x m_{m}$ left $\lim b=p_{1} \times g \times(h+x)+P_{4}$

Equatiog the two prassure

$$
\begin{aligned}
& P_{g \times g} \times h+p_{1} g x+P_{5}=p_{1} \times g \times(h+x)+P_{A} \\
& \Rightarrow P_{A}-P_{B}=-f_{g} \times g \times h+f_{1} g x-f_{1} g(h+x) \\
& =g x h\left(\lg -f_{1}\right)
\end{aligned}
$$

[2] INVERTED U-TUBE DIFFERENTIAL MANOMETER \Rightarrow ?
 the tuhe are conneeted to the points whose didference of pressure s to be measured. It is used for measuring dibeterence of tow prissures. The figure shous an miveded. U-tube defferential moironstenc Cornected to the two points A and B. Lef the pressarel af A is mure then the prossoute af B.

Lot h_{1} - haight of liqued inleft limh beles the datwon line $x-x$
$i_{m_{2}}=H_{e i g h t}$ of liguid in righation'b
$h=$ pisfarence of light ligaid
$P_{1}=$ Density of lequid at A
$T_{2}=$ Density of ligud at B
$f_{S}=$ Density of light lowind

- $P_{A}=p r e s s a r e$ of A
$E_{B}=$ prossure at B

Taking $x-x$ as datuan line, then pressure in the leff lims below $x-x$

$$
=p_{A}-p_{1} \times g \times h_{1}
$$

Pretisure in the right limb below $x-x$

$$
=p_{3}-p_{2} \times g \times h_{2}-P_{5} \times g \times h
$$

Enkuting the twe pressure,

$$
\begin{aligned}
& P_{A}+P_{1} \times g \times h_{1}=P_{5}-P_{2} \times j \times h_{2}-\psi_{5} \times g \times h \\
\Rightarrow & P_{4}-P_{B}=P_{1} \times g \times h_{1}-P_{2} \times g \times h_{2}-f_{5} \times g \times h
\end{aligned}
$$

Questions -)
(1) A simple U-tube monompter is used to measure the pressing of water in a pipe the which is a bove the atmospheric pressure. the contact befweenow the fig. determine the the tr e the of m,
 the limb of U-tube is 10 cm and the free surface of the Hg is at the same keel as the center the pipe?
(ohs) $p_{n}+p_{1} g h_{1}=f_{2} g h_{2}$

$$
\begin{aligned}
& \Rightarrow P_{A}+\left(1000 \times 9.81 \times 10 \times 10^{-2}\right)=\left(13.6 \times 1000 \times 9.81 \times 100 \times 10^{2}\right) \\
& \Rightarrow P_{A}=\left(13.6 \times 1000 \times 9.81 \times 10 \times 10^{-2}\right)-\left(1000 \times 9.81 \times 10 \times 10^{-2}\right) \\
& \Rightarrow P_{A}=1334116=981=12360.6 \mathrm{~N} / \mathrm{m}^{2} \quad \text { (Ans) }
\end{aligned}
$$

(2) A single column manometer is cinnocted to a pipe containing a liquid of specific gravity 0.9 as ancon in figure. Find the pressure in the pipe if the area of the reservoir is loo tire the area is the tube of manometer?
(Ans) $h_{1}=20 \mathrm{~cm}=0.20 \mathrm{c}$

$$
\begin{aligned}
& h_{2}=40 \mathrm{~cm}=0.4 \mathrm{~m} \\
& P_{1}=0.9 \times 1000=900 \\
& f_{2}=13.6 \times 10000=136.00 \\
& g=9.81
\end{aligned}
$$

$$
\begin{aligned}
& \frac{A}{a}=100 \\
& \Rightarrow \frac{a}{A p}=\frac{1}{102}
\end{aligned}
$$

$$
\begin{aligned}
P_{A} & =\rho_{2} g h_{2}-f_{1} g h_{1}+g \frac{a}{A} \cdot h_{2}\left(\rho_{2}-\rho_{1}\right) \\
& =13600 \times 9.81 \times 0.4-900 \times 9.81 \times 0.21+9.8) \times \frac{1}{100} \times 0.4(13600-900) \\
& =53366.4-17658+0.03924 \times 12700 \\
& =35.705 .4+498.348 \\
& =36206.748 \mathrm{~N} / \mathrm{m}^{2} \quad \text { (hrs) }
\end{aligned}
$$

$$
f_{2}=\begin{gathered}
13.6 \\
\times 1000
\end{gathered}
$$

$$
A=100 a
$$

(Bourdon tube pressure gauge
\rightarrow Boureten tabs pressure gauges are classified as mechanical pressure measuring instruments, and thus opereote without any electrical power. This type of pressure ganges were forest developed by \mathcal{E}. Bourdon in 1849 ,
\rightarrow Bourdon tubes are radially formed tubes trith an oval cross -section.
-7 Bowerton tube pressure ger gauges car be used to measure over a wide range of pressure form vacuum to prossueg. as high as bow thous and psi.
\rightarrow It is basically consisted of a a C-shapet hollow tube, whose one end is fixed and Connected to the pressure tapping, the there end free.
\rightarrow The cross section of the tube is elliptical. When pressiese is applied, the elliptical tube (Burden tube) dries to acquire a Circular Cress. Section, as a result, Stress is developed and the the tries $t=$ straighten up.
\rightarrow Thus the fores end of the tube moves up, depending en magnitude if pressure.
\rightarrow This motion is the measure of the pressure and is indicated via the movement of a deflecting and indicating mechanism is attached to the gree end that restates the pointer and indicates the pressure reading.
\rightarrow The materials used are commonly phosphor Bronze, Brass and Beruglivir, Co per,
\rightarrow Though the c-type tubes are most common, other shapes of tubes, such as helical, twisted or spiral tubes are also in use.

\rightarrow Total pressure is defined as the force exerted by a staticforat on a surface esther plane ore curved when the bluing comes in contact with the surfaces. This force always acts normal to the Surface.
\rightarrow Centre of pressure is defined as the print of application of the total pressure on the surface. There are four cases of submerge surfaces on which the total pressure force and centres of pressure is to be determined. The submerged surfaces may be:-
(1) Vertical plane surface
(2) Horizontal plane surface
(3) Inclined plane surface
(4) Curved surface
(1) Vertical plane surface submerged in Liquid \Rightarrow;

Consider a plane Verctioch surface of arbitrary shape immersed in a liquid as shown in figure.
Let $A=$ Total area of the
surface
Th F Distance of C.G. of the
area from free
surface of liquid
$G=$ centre of gravity of plane Surface.
$P=$ centre of pressure
h^{\prime} = Distance of centre of pressure
Free surface of LIquis
 from bree surffuce of liquid
(a) TOTAL PRESSURE (F):-

The total pressure on the surface may be determined by dividing the entire surface mo to a number of small paratied strips. The force on scat strip is Then calculated and the total pressure force on the whole area is calculated by intecyrexting the force on small strop;

Consider a strip of thickness ah and width b at de depth of h from free surface of liquid as shown in bigener.
Pressure intensity on the strop, $P=f i g h$
Area of the strip; $d A=b \times d h$
Total pressure bore on strip, $d f=p \times$ Area

$$
=\operatorname{tgh} x b x d h
$$

- Total pressure force or the whole surface.

$$
E=\int d F=\int \rho g h \times b \times d h=i \rho \int b \times h x d h
$$

But $\int b \times h \times d h=\int h \times d A$
$=$ moment of surface errea about the froe surface ot loguid
$=$ Area of surface \times Distance of $2 . q$. from the bree Surface

$$
\begin{aligned}
& \therefore \quad F=A \times \bar{h} \\
& \therefore \quad A \bar{h}
\end{aligned}
$$

8. Fore water the value of $P=1000 \mathrm{~kg} / \mathrm{kn}^{3}$ and $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ The force wad be in Newton.
(b) Centre of Pressure $\left(h^{\prime}\right):-$

Centre of pressure is calculated by using the principle of moises. which states that the moment of the resultant force about an axis is equal to the sum of moments of the components cubout the same axis.
The resultant force F is acting at p, of a distance h^{\prime} brain bruce surface of the tequid as show in figure. Hence moment of the force F about free surface of the liquid $=F \times h^{\prime}$
Moment of force dr, acting on a strip about free surface is

$$
\begin{aligned}
\text { Sequin } & =d f \times h \quad[\because d F=\operatorname{fogh} \times b \times d h] \\
& =f g h \times b \times \text { th } \times h
\end{aligned}
$$

Sum of moments of all such forces about free Surface of liquid

$$
\begin{aligned}
& =\int f g h \times b \times d h \times h \\
& =f r \int b \times h \times h o t h \\
& =f g \int b h^{2} d h \\
& =f g \int h^{2} d A \quad(\because b d h=d A)
\end{aligned}
$$

But $\int h^{2} d A=\int b h^{2} d h$
= moment of Inertia of the surface about free surface of liquid $=I_{0}$
\therefore sum of moments about free surface $=\rho g I_{0}$
Equating (1) and (2), we get

$$
\begin{align*}
& F \times h^{\prime}=\rho g I_{0} \\
& \text { But } \Rightarrow F=\rho g A \bar{h} \\
& \therefore \rho g A_{h} x h^{\prime}=\rho g I_{0} \\
& \Rightarrow h^{\prime}=\frac{\rho g I_{0}}{f g A F}=\frac{I_{0}}{A h} \tag{3}
\end{align*}
$$

By the theorem of parallel axis, we have

$$
I_{0}=I_{q} H A \times \overline{h^{2}}
$$

where It $=$ moment of Jnerdice of stres about an axis passeng through the city of the menen and pracellel to the brice sarface of tiqued.
Subitututing I_{0} in equation (3), wo get

$$
\begin{equation*}
h^{\prime}=\frac{I_{q}+A \bar{h}^{2}}{A \bar{h}}=\frac{I_{q}}{A \bar{h}}+\bar{h} \tag{4}
\end{equation*}
$$

In af (4), \bar{h} is the distance of c.ty ef the areer of the vertical surctase from the surgace of the liguid. Hence from equation (4), it is clener that.
(i) Centre of pressame (i.e. h^{\prime}) lies below the centre of greovity if the veritalal surefrace.
(i) The dastonce of ceatre of pressure freen thaes swelfece of liquid is independent of the tersity of the liquid.

The troments of Inectia and other geometruc propecuties of Some imporitant plane surkaces:-

ARCHIMEDES PRINCIPLE

- When an object is completely or partially immersed in a fluid, the fitwid exerts an upward force on the object equal to the weight of the fried displaced by the object.
\rightarrow When a solid object is wholly or pertly immersed in afford, the fluid molecules are Continually striking the submerged surface of the object. The farce due to these impacts can bo combined into a single force the "buoyant Force". The immersed object will be lighter" ie. It will be buoyed up by an amount equal to the weight of the fluid it displaces.

BUOYANCY \Rightarrow
When a body is immersed in a fluid, an upward force is exerted by the fluid on the body. This upward force is equal to the weight of the fluid displaced by the body and is called the force of becoyancy or simply buoyancy.
Centre of buoyancy:-
It is defined as the point, through which the force of buoyancy is supposed to act. As the force of buoyancy is a vertical force and is equal to the weight of the fluid displaced by the body, the centre of buoyancy will be the centre of gravity of the fluid displaced.

METACENTRE: \rightarrow

- It is defined as the point about which a bloody starts oscillating when the poly is tilted by a small angle. The meta-cintrie may also be defined as the point at which the lime of action of the force of buoyancy will meet the nounal axis of the body when the body is given a small angular. displacement.
\rightarrow Considze a body floating in a liquid ais shown in figure. Let-rye booty is in equilibrium and 'on is: the centre of gravity and BAthe Centre of buoyancy. Fer equilibrium, both the points lie e on the normal axis which is vertical.

NORVABE AXIS

(a)

(b)

Let the body is giver small angular displacement in the clockwise direction as shoran in figure (a). The centre of buoyancy, which is the centre of gravity of the displaced liquid on Centre of gravity of the portion of the body Sub-menged in lout walt row be shifted towards right from the normal axis, tet it at z_{1} as show in fiztire (b). The line of action of the force of buoyancy in this nest position, wall intersect the normal axis of the body oft some point soy M. This point M is called repeta-center.

META- (ENTRIC HEIGHT \Rightarrow

The distance MG, ie. the distance between the meta-cerive of a floating body and the centre of gravity of the body is called meta-centric height.

(b)
(C)PLAN OF BODY AT WATER
LINE

Couple Due to Wedges :-
Consider towards the right of the axis a small strip of thickness $d x$ at a distance x from 0 as shown in fig (b). The height of strip $x \times \angle B O B^{\prime}=x \times \theta \quad\left(\because \angle B O B^{\prime}=\angle A O A^{\prime}=B M \rho_{1}^{\prime}=0\right)$
\therefore Area of strap $=$ Height \times Thickness $=x \times 0 \times d x$
If L is the length of the floating body, then

$$
\begin{aligned}
\text { Flume of strip } & =\text { Area } \times \mathrm{L} \\
& =x \times \otimes \times \mathrm{L} \times d x
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Weight of strip } & =f g \times \text { volume } \\
& =f g x 0 \text { La re }
\end{aligned}
$$

Simplardy, it a small strip of thickness doe at a distance a from es 0 to wards the left of the axis is Eensichenad, the weight sf strip an be fgrueldx. The two weights are rockling in the opposite direction and hence constitute a couple.
Moment of this couple = Weight of Each strip x Distance between these two weighs

$$
\begin{aligned}
& =\operatorname{fg} x \theta L d x(x+x) \\
& =\operatorname{Pg} x \theta L d x \times 2 x=2 \operatorname{fg} x^{2} \theta L d x
\end{aligned}
$$

\therefore Moment of the couple fore the whole wedge

$$
\begin{equation*}
=\int 2 f y x^{2} \theta L d x \tag{1}
\end{equation*}
$$

Moment of couple due to shifting of centre of buoyancy from

$$
\begin{aligned}
B \text { to } B_{1} & =F_{B} \times B B_{1} \\
& =F_{B} \times B M \times \theta \quad\left(\because B B_{2}=B_{3} M \times \theta \text { if } \theta\right. \text { is very } \\
& =W \times B M \times \theta \quad-(2) \quad\left(F_{B}=\omega\right)
\end{aligned}
$$

But these two couples care the same. Hence equating equations (J) sid), we get

$$
\begin{aligned}
& W \times B M \times \theta=\int 2 P x^{2} \theta d x \\
\Rightarrow & W \times B M \times \theta=2 f g \theta \int x^{2} L d x \\
\Rightarrow & W \times B M=2 f g \int x^{2} L d x
\end{aligned}
$$

Now tod $=$ Elemental area on the water tine shown in
figure (c) and $=d A$

$$
\therefore \quad W \times B M=2 f g \int x^{2} d A
$$

But from figure (C). it is clear that $2 \int x^{2} d A$ is the Second moment of ana of the plan of the boldly of water Surface cobout the axis $y-y$. Therefore

$$
\begin{aligned}
& w \times B M=\varphi g \\
\Rightarrow & B M=\frac{\rho g I}{w}
\end{aligned}
$$

$$
\text { (where } L=2 \int x^{2} d A \text {) }
$$

But $W=$ weight of the body
$=$ Weight of the fluid displaced by the booby
$=4 g \times$ volume of the fluid dicplicest by the body
$=$ fy x volume of the body sub-merged in water

$$
=\lg x \forall
$$

$$
\begin{align*}
\therefore B M= & \frac{P g \times I}{p g \times V}=\frac{\tau}{\forall}=(3) \tag{3}\\
& G M=B M-B G=\frac{I}{Q}-B G=\operatorname{Be}(\underline{Y} \Rightarrow \\
\therefore & \text { Metal centric height }=G M=\frac{1}{\forall}-B G \tag{4}
\end{align*}
$$

CONDITIONS OF EQUILIBRIUM OF A FLOATING AND SUBMERGED BODIES

A sub-menged or a floating body is sade to be stable if it comes back to its original position after a slight disturbance. The relative position of the centre of gravity (6) and centre of s buoyancy (8)) of a body determines the stability of a submerged body.

* Stability of a Sub-marcjed body : -

The position of centre of gravity and centre of buoyancy in case of a Completely submerged booty are bixed. Consider a balloon, which is completely submerged in sure. Let the lower portion of the balloon contains heavier material. So that its Centre of gravity is lower than its centre of buoyancy as Shown in figure (a). Let the weight of the balloon is W. The wright W 's acting through of, vertically in the downoured correction, white the buoy ant forte F_{B} is acting vertically up. through B. For the equolobriwn of the balloon $N=F_{B}$. . W the bolton is given an angular displacement in the clock wise olirection as shown in figure e (a), then w and F_{B} con stotute a couple acting in the antt-clockwase direction and brings the balloon in the original portion. Thus the balloon in the position, Shown by figure coy is in stable equitibrium.

(a)

STABLE EQUILIBRIUM

(b)

UNSTABLE EQUILIBRIUM

$$
B \circ G
$$

(C)

NEUTRAL EQUILIBRIUM

(Stabilities of sub-merged bodies)
(a) Stable 'Equilibrium :-
when $W=F_{g}$ and point B is above G, the body is said to be th stable equilibrium.
(b) Unstable Equilibrium:-

If $W=F_{B}$, but the centre of buoyancy (B) is below centre of gravity (N), the body a in unstable equitibrioum as shown in fig' 'b'). A slight displacement to the body in the clockwise direction te the body, in the clock wise direction, gives the couple due to wind f_{3} also in the cincrisise direction. Thus the body does not reaver to its original position and less hence the body is in unstable. equiborium.
(c) Neutral equilibrium i-

If $F_{B}=W$ and B and G are at the same point, as shown in fig f (f , the body is sud to be in neutral equilibritom.

Stability of Planting $B o d y \Rightarrow$
The stability of a floating body is determines from the position of Meta-centae (M), In case of floating body, the weight If the body is equal to the weight of liquid dicploezd.

(a) Stable equotibrivern M is above if
(b) Unstable equilibrium H is below G.
(Stability or Howling bodies)
(a) Stable Gailibrium :-

If the pent M is above M is above G, the floating body will be in stabile oquabibrium as shown in fig g (a). It a slight angular e dispalacement is given to the footing body is the clock wise digestion, the centre bet buoyancy swifts from. B to B_{2} Such that the vertical line through B_{4} puts at on. Th len the btavejant bruce F_{B} thanotish B, and wright w through of constitute a couple sating in the anti-clockwise elinection and thus bringing the footing the bloating body in the original position.
(b) Unstable Equilibrium :-

If the point m is below G, the floating body wit be in unstable equilibrium of shown in (b). The disturbing couple ie acting in the oreckwise direction. The couple due to bwoynat force F_{B} and w is also acting in the clock wise direction and thus overturning the bloating body.
(c) Neutral Equilibrium-

If the point mi s at the centre of gravity of the body, the floating body will be in mestrat equilobripum.

CHAPTER -OM
TYPES of FLUID FLOW:-
The fluid flow is classified os:
(i) Steady and unsteady flows
(ii) Uniform and non-uniform flows
(iii) Laminar and turbulent flows
(iv) Compressible and incompressible flows
(v) Rotational and irucotational blows and
(vi) One, two or three dimensional flows
(i) Steady and Unsteady blows \Rightarrow
\rightarrow Steady flow is defined as that type of flow in which the fluid Characteristics like volocitypresswee, density eft. at a paint do it change with time. Thus fore steady blow, mecthematically, we haves

$$
\left(\frac{\partial V}{\partial t}\right)_{x_{0} ; y_{0} z_{0}}=0,\left(\frac{\partial p}{\partial t}\right)_{x_{0} y_{0}, z_{0}}=0,\left(\frac{\partial p}{\partial t}\right)_{x_{0}, y_{0} z_{0}}=0
$$

where $\left(x_{0}, y_{0}, z_{0}\right)$ is a foxed point in fluid bield
\rightarrow Unsteady flow is that type of, How, in which the velocity spresteres at a point Chang dr with or densify muppet to time. Thus mathematically, for unsteady fire

$$
\left(\frac{\partial v}{\partial t}\right)_{x_{0,}, y_{0, z}} \neq 0 .\left(\frac{\partial p}{\partial t}\right)_{x_{0}, y_{0}, z_{0}} \neq 0 \mathrm{etc}
$$

(1) Uniform and Non-Uniform Flows $\rightarrow 7$
\rightarrow Uniform flow is defined as that type of flow in which the volowly at any giver time doses not change with respect to spare the. length of divescikn of the flow). Mathematically, for uniform fla

$$
\left(\frac{\partial v}{\partial s}\right)_{t=\text { constant }}=0
$$

where iv $=$ change of velocity
$D_{S}=$ length of How in the direction S
\rightarrow Non-Unilomm flow is that type of flow in which the velouty at any given time changes with respect to space. Thus, mathematically, bor non- uniform flow

$$
\left(\frac{\partial V}{\partial s}\right)_{t=\text { constant }} \neq 0
$$

(iii) Laminar and Turbulent Flow \Rightarrow
\rightarrow Laminate flow is defined as that type of flow in which the fluid particles move along weli-defined paths ore steam line and all the steam-linesare streeight and parallel. Thus the particles move in laminas or layers gliding smoothly over e the adjacent layer. This type of flow is also called steam-line flow or viscous flow.
\rightarrow Turbulent flow is that type of flow in which the fired particles move in a zigzag way. Due to the movement of fluid particles on a zigzag way, the eddies formation takes place which are responsible for high energy loss. fere a pope flow, the type of flow is determined by a non-dimansinal number called the Reynold numbers.
where $D=$ Diameter of Pipe
$V=$ mean velocity of flows in pipe
W) = Kinematic viscosity of Hud d

If the Reynold number is less than 2 tron, the flow is called, laminate, it the Reylond number is more than 4000, then it is called turbulent blow. Is the Reyndel number lies between 2000 and 4000 , the flow may be laminar or turbulent.
(iv) Compressible and 2 incompressible Flows \Rightarrow
\rightarrow Compressible flow is that type of $\& 20$ in which the density of the fluid changes freon point to point ore in other words the dentists (f) is nit constant fore the fluid. Thus, mathematically, fore Compressible frow,

$$
\rho \neq \text { constant }
$$

\rightarrow Incompressible blow is the od type of blow in whee the density is Constant fort the bluid blow. Liquids acre generally incompressible conte gases are compressible. Mathementicatly, bu e incompressible blow,

$$
f=\text { constant }
$$

(v) Rotational ind Ercrotational Flows \Rightarrow

Rotectionol flow is that type of blow in which the fluid particles while trowing waling steam times, also reotrotes shout their eco axes And. if the fluid particles while kiozing outing storm lines, do not retaste about shaper own axis then that type of flow is called irerotcitional Sow
(vi) One-,Two-, and Three -Dimensional Flows i-

- Ore dimensional Bytom is that type of blow th which the flow parameter such as velocity is a function of time and D ne space coordinate andy, say x. Fore a steady one, dimen ronal flow, the velocity is a function of one space. Ce-oredinote only. The variation of velocities in other tho mutually perpendicular e direction is assumes negligible. Hence, mathematically, fore one-dimens oneal blow,

$$
u=t(x), \quad v=0 \text { and } w=0
$$

where v, v, and wo are velour component in x, y and z directions respectively,
\rightarrow Two dimensional blow is the nt type of flow in which the velocity is a tersunction of time and two rectangular space co-orcdonates orgy cay x and y. Fore a steady fro dimensional blow the velocity is a function of two -space cororetimale orly. The veto variation of velocity in the third direction is. negligible. "Thus, mathematically fore two dimensional stow,

$$
u=b_{1}(x, y), v=v_{2}(x, y) \text {, and } u=0
$$

\rightarrow Three-dimension al know iris that type of flow it which the velocity is a function of time and three r mutually perpendicular directions. But bore a steady threee-dimensional flow the fluid parameters are functions of three space cororedinates $(x, y$ and $z)$ only. Thus, mather matically, bore three-dimensionat blow.

$$
v=k_{1}(x, y, z), v=b_{2}(x, y, z) \text { and } w=b_{3}(x, y, z)
$$

RATE OF FLOW OR DISCHARGE (Q)
Lt is defined as the quantity of a fluid flowing per second through a section of a pipe ore a channel. For an incompressible fluid (ore liquid) the rate of flow or elischarga is exprosessed as the volume of fluid blowing excross the section pere second.
For compressible fluids the rate of btw is usually expressed as the weight of fluid flowing across the section. Thus
(i) For liquids the Unis of Case m^{3} / s or listres/s
(ii) Fore gases the units of Q is logs ore Newton /s

Consider a loquid flowing through a pipe in whin.
$A=$ Cruss-sectional ares 615 pipe
$V=$ Average velocity of fluid excross the section
Then D is charge $Q=A \times V$.

CONTINUITY EQUATION \Rightarrow
The equation based on the principle of Conservation of mass is cattle' Continuity equation. Thus br e is fluid flowing through the pipe it all the cross -section, the quantity of fused per second is Constant.
Consider treveross-sactionst of ex pipe as shawn in friguee,
let $v_{\text {I }}=$ Average velocity at Croiss-seoforn 1-I
$-P_{1}=$ Density at section $1-1$
$A_{1}=$ Area of pipe at section 1-1
and $\mathrm{V}_{2}, \mathrm{P}_{2}, \mathrm{~A}_{2}$ are corresponding value at section 2-2,
Then rate of flow ed Section $1-1=4, A_{1} V_{1}$
Rate if blow at section $2-2=P_{2} A_{2} V_{2}$

According to law of conservation of
(1)
(2)
 sass:
Rate of blow at section 1-1 (Fluid blowing throng a pipe)

$$
=\text { Rate of foo at section 2-2 }
$$

$$
\text { org indign } f_{1} A_{1} V_{1}=P_{2} A_{2} V_{2}
$$

The above equation is applicable to the compressible as well as incompatible fluids and is called Continuity Equation.
If the fuse iso is incompruessate,
then $\varphi_{1}=P_{2}$ and continuity equation reeduces to

$$
A_{1} V_{1}=A_{2} A_{2}
$$

EquatIONS OF MOTION \Rightarrow
According to N newton's second lew of motion, the net force F_{x} acting on a fluid element in the direction of x is equal to mass m of the fluid element multiplied by the acceleration. a_{x} in the x-direction.

Thus mathematically, $f_{x}=m \cdot a_{x}$
In the fluid flow, the following forces are present,
(i) Fo, gravity force
(ii) F_{p}, the pressure force
(ii) Pr, force duce to viscosity.
(iv) F_{t}, force due to turbulence
(v) F_{c}, forces due to compressibility

Thus in equation, the net force

$$
F_{x}=\left(F_{g}\right)_{x}+\left(F_{p}\right)_{x}+\left(F_{v}\right)_{B_{x}}+\left(F_{p}\right)_{x}+\left(F_{c}\right)_{x}
$$

(i) It the force due to compressibility, fec is negligible, the resulting net force

$$
F_{x}=\left(F_{q}\right) x+\left(F_{p}\right) x+\left(F_{v}\right)_{x}+\left(F_{t}\right)_{x}
$$

and equation of motions are called Reynold's equations of motion.
(i) Fore Glow, where $\left(F_{t}\right)$ is negugble, the requed equate, resulting equations of motion are known as Navier-stokes Equation.
(ii) It the flow is assumed to be ideal, V_{T} coos force ($F v$) is zerco and equation of motions are known as Euler's equation of matron..

EULER'S EQUATION OF MOTION: \Rightarrow
This is equation of motion in which the force clue to gravity and Pressure are taken into consideration. This is derived by considering the motion of a fluid element along a steream-tine ins:
consider a stream-line in which flow is taking place in a direction as shown on bigure. Consider a cylindrical dement of crus recto, dA and length dis. The frore acting on the cylindrical element are

1. Pressure force pdf in the digestion of flow
2. Pressure force $\left(p+\frac{\partial p}{d s} d s\right) d A$ opposite to the ditroction of flow, 3. Wright of element prods.

Let θ is the angle between the direction of blow and the line of action of the weight of element.
The resultant force on the fluid element in the direction of S must be equal to the mass of fluid element X acceleration in the directions.

$$
\begin{align*}
& \therefore \quad P d A-\left(P+\frac{d p}{d s} d s\right) d A-\rho g d A \phi s \cdot \cos \theta \\
& =f d A d s \times a_{s} \tag{1}
\end{align*}
$$

where a_{s} is the accelercatren in the direction of s.

Now, $a_{s}=\frac{d v}{d t}$, where V is a founder of S and t.

$$
\begin{aligned}
& =\frac{d v}{\partial s} \frac{d s}{d t}+\frac{d v}{\partial t} \\
& =\frac{v d v}{d s}+\frac{\partial v}{d t}\left(\because \frac{d s}{d t}=v\right)
\end{aligned}
$$

If the flow is steady,

$$
\frac{d v}{d t}=0
$$

$$
\therefore c_{s}=\frac{v d v}{d s}
$$

Substituting the value of a_{s} on $a g^{n}(1)$ end simplifying the orpation, we get

$$
-\frac{\partial P}{\partial_{s}} a s d A-\rho g d A d s \cos \theta=\varphi d A d s x \frac{\partial v}{\partial_{s}}
$$

Dividing by $f d s d A \cdot-\frac{d p}{p d s}-g \cos \theta=\frac{v d v}{\partial s}$

$$
\text { or } \frac{\partial p}{p \partial s}+g \cos \theta+v \frac{\partial v}{\partial s}=0
$$

But from fig (b), we have $\cos \theta=\frac{d z}{d s}$

$$
\therefore \frac{1}{f} \frac{d p}{d s}+g \frac{d z}{d s}+\frac{v d v}{d s}=0 \text { or } \frac{d p}{d}+g d z+v d v=0
$$

$$
\begin{equation*}
\frac{d p}{p}+g d z+v d v \neq 0 \tag{2}
\end{equation*}
$$

Equation (20) is known as Euleris equation of motion.
BERNOULLI'S EQUATION FROM EULER'S EQUATION \Rightarrow
Bernoultis equation is obtained by integrating the Eulere's equation of motion as

$$
\int \frac{d p}{p}+\int g d z+\int y d v=\text { constant }
$$

If blow is incompressible, f th constant and

$$
\begin{align*}
& \frac{p}{p}+g z+\frac{v^{2}}{2}=\text { constant } \\
\Rightarrow \quad & \frac{p}{f g}+z+\frac{v^{2}}{2 q}=\text { constant } \\
\Rightarrow \quad & \frac{p}{f g}+\frac{v^{2}}{2 g}+z=\text { constant } \tag{3}
\end{align*}
$$

Equation (3) is A Bernoulli's equation in which. $\frac{P}{P g}=$ pressure energy per unit weight of fond or pressure head.
$v^{2} / 2 g=$ kinetic energy per unit weight on kinetic head
Z = potential energy per unit weight or potential head
ASSUMPTIONS:-
The following are the assumptions. made in the derivation of
Bernoulli's equation:
(i) The fluid is ridealinie. viscosity is zero.
(iv) The flow is steady.
(ii) The blow is incompressible.
(iv) The flow is trerotational.

Practical Applications of -Bernoulli's equation:-
Bercnoullis equation is applied in all problems of. incompressible Fluid flow where energy considerations are involved. But we shaft Consider its application to the following measuring devices:

1. Venturimetore
2. Orifice meter
3. Pitot-tube
(1) Venturimeter \Rightarrow
\Rightarrow A venturimefer is a device used for measuring the rate of a fin of a fluid bowing through a pipe. If consists of three parts:
(i) A short converging part,
(ii) Throat and (iii) Diverging part.
\rightarrow It is Based on the principle of Bernoulli's equation.

Expression for rate of flow through Venturimetere:-
Consider a venturameter fitted in a horizontal pipe through which a fluid is flowing (soy water), as shown in figure.

Let $P_{1}=$ pressure at section (1) α_{1} = diameter af inlet on of [VENTURIMETER] cotton (1) ,
$V_{1}=$ velocity of fluid an section (1),

$$
a=\text { Arse at } \operatorname{soction}(1)=\frac{\pi}{1} a_{1}^{2}
$$

and $a_{2}, p_{2}, v_{2}, a_{2}$ are coucrsponding values at section (2):
Applying Bewinoulus equation at section (4) and (2), we get

$$
\begin{equation*}
\frac{p_{1}}{f_{g}}+\frac{v_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{P_{g}}+\frac{v_{2}^{2}}{2 g}+z_{2} \tag{4}
\end{equation*}
$$

As pipe is horizontal, hence $z_{1}=z_{2}$

$$
\therefore \frac{P_{1}}{f_{g}}+\frac{v_{1}^{2}}{2 g}=\frac{P_{2}}{f g}+\frac{v_{2}^{2}}{2 g} \text { or } \frac{P_{1}-P_{2}}{P g}=\frac{v_{2}^{2}}{2 g}-\frac{v_{1}^{2}}{2 g}
$$

But $\frac{P_{1}-P_{2}}{P g}$ is the difference of pressure heads at sections land 2 and it is equal to h or $\frac{P_{1}-P_{2}}{P_{g}}=h$
Substituting this value of $\frac{P_{1}-P_{2}}{P g}$ in the cibove equation, we get

$$
\begin{equation*}
h=\frac{v_{2}^{2}}{2 g}-\frac{v_{1}^{2}}{2 g} \tag{5}
\end{equation*}
$$

Now applying continuity equation at section $1 \& 2$

$$
a_{1} v_{1}=a_{2} v_{2} \text { or } v_{1}=\frac{a_{2} v_{2}}{a_{1}}
$$

Substituting the value of v_{1} in equation (5),

$$
\begin{aligned}
h & =\frac{v_{2}^{2}}{2 g}=\frac{\left(\frac{a_{2} v_{2}}{a_{1}}\right)^{2}}{2 g} \\
& =\frac{v_{2}^{2}}{2 g}=\left[1-\frac{a_{2}^{2}}{a_{1}^{2}}\right]=\frac{v_{2}^{2}}{2 g}\left(\frac{a_{1}^{2}-a_{2}^{2}}{a_{1}^{2}}\right) \\
& \Rightarrow v_{2}^{2}=2 g h \frac{a_{1}^{2}}{a_{1}^{2}-a_{2}^{2}} \\
\Rightarrow v_{2} & =\sqrt{2 g h \frac{a_{1}^{2}}{a_{1}^{2}-a_{2}^{2}}}=\frac{a_{1}}{\sqrt{a_{1}^{2}-a_{2}^{2}}} \sqrt{2 g h}
\end{aligned}
$$

\therefore Discharge, $Q=a_{2} v_{2}$

$$
\begin{align*}
& =a_{2} \frac{a_{1}}{\sqrt{a_{1}^{2}-a_{2}^{2}}} \times \sqrt{2 g h} \\
\Rightarrow Q & =\frac{a_{1} a_{2}}{\sqrt{a_{1}^{2}-a_{2}^{2}}} \times \sqrt{2 g h}
\end{align*}
$$

Equation (6) gives the discharge under e ioleal conditions and is called theoretical discharge. Actual discharge wit be less than theoretical discharge.

$$
\begin{equation*}
Q_{a c t}=c_{d} \times \frac{a_{1} a_{2}}{\sqrt{a_{1}^{2}-a_{2}^{2}}} \times \sqrt{2 g h} \tag{4}
\end{equation*}
$$

whinere cot Coefficient of Venturimetere and its value is less

- Than 1. (Co-ebbicibent of discharge)

Value to ' n ' givenby different () tube manometers:-
Case-1: Let the dibtserential manometer contains a liquid which is heavier than the lignin flowing through the pips.
Let $S_{h}=$ Specific gravity of the heavier liquid
$S_{0}=$ specific gravity of the liquid flowing through pipe

Than $h=x\left[\frac{S_{h}}{s_{0}}-1\right]$

Case-11: If the differential manometer contains apquid which is lighter than the liquid flowing through the pipe, the value of h is given by,

$$
h=x\left[1-\frac{s_{t}}{s_{t}}\right]
$$

$S_{l}=$ Specific gravity of U-tube
$S_{0}=$ specific gravity of fluid blowing through pipe
$x=$ Difference of the lighter liquid Columns in 0-tube.
(1) Question: The diameter of pe pe at section $1 R 2$ are 10 cm \& 15 cm respectively. Find the distance throng the pipe, if the velocity of water flowing through the pipe at section 1 is $5 \mathrm{~m} / \mathrm{s}$. Also determine the velocity at section 2 .
Answers:-

$$
\begin{aligned}
& d_{1}=10 \mathrm{~cm}, d_{2}=15 \mathrm{~cm}=0.15 \mathrm{~m} \\
& v_{1}=5.01 \mathrm{~m} / \mathrm{s} \quad v_{2}=23 \\
& Q_{1}=? ? \\
& x\left\{\begin{aligned}
Q_{1} & =A_{1} \times V_{1} \\
& =\frac{\pi}{4} d_{1}^{2} \times V_{1}
\end{aligned}\right. \\
& =\frac{\pi}{4} \times(10)^{2} * 5=\frac{\pi}{4} \times 100 \times 5=3.141 \times 125 \\
& =392.62 .
\end{aligned}
$$

$$
\begin{aligned}
a_{1} & =A \times V_{1} \\
& =\frac{\pi}{4} \times(0.017 \times 5 \\
& =\frac{\pi}{4} \times 0.0001 \times 5 \\
& =\frac{8.1419}{4} \times 0.0001 \times 5 \\
& =0.0392 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

- Then, $A_{1} V_{1}=A_{2} V_{2}$

$$
\begin{aligned}
A_{1} V_{1} & =A_{2} V_{2} \\
\Rightarrow v_{2} & =\frac{A_{1} V_{1}}{A_{2}} \Rightarrow V_{2}=\frac{0.03 .92}{\frac{\pi}{4}\left(15 \times 10^{-2}\right)}=\frac{0.0392}{0.78 \times(0.15)^{2}} \frac{0.0392}{0.0175} \\
& =2.24
\end{aligned}
$$

(2) 解 $B 0 \mathrm{~cm}$ diameter pipe in which water is fleming branch en into two pipes of diameter 20 em . and 15 cm mespsctively. St -the average velocity in the 30 cm . diameter e pipe is $2.5 \mathrm{~m} / \mathrm{s}$, findeut the discharge in the pipe? Also deterernine the velocity in 15 cm . Pipe if the amereage velocity in 20 cm . diameter pipe is $2 \mathrm{~m} / \mathrm{s}$?

Ans Given, $d_{1}=50 \mathrm{~cm}=0.30 \mathrm{~m}$

$$
\begin{aligned}
& d_{2}=20 \mathrm{~cm}=0.20 \mathrm{~m} \\
& d_{3}=15 \mathrm{~cm}=0.25 \mathrm{~m} \\
& v_{1}=2.5 \mathrm{~m} / \mathrm{s} \quad, \quad Q=? \\
& v_{2}=2 \mathrm{~m} / \mathrm{s} \\
& v_{3}=2 ?
\end{aligned}
$$

$$
\left.\begin{array}{rl}
Q_{1} & =A_{1} \times V_{1} \\
& =\frac{\pi}{4} d_{1}^{2} \times V_{1} \\
& =\frac{\pi}{4} \times(0.30)^{2} \times 2.5 \\
& =\frac{\pi}{4} \times 0.09 \times 2.5
\end{array}\right)=\frac{3.41}{4} \times 0.09 \times 2.58
$$

on figure,

$$
\begin{aligned}
& Q_{1}=Q_{2}+Q_{3} \\
& \Rightarrow A_{1} V_{1}=A_{2} V_{2}+A_{3} V_{3} \\
& \Rightarrow 0.176=\frac{\pi}{A} \times d_{2}^{2} \times v_{2}+\frac{1}{4} \times d_{3}^{2} \times v_{3} \\
& =\frac{\pi}{4} \times(0.20)^{2} \times 2 \cdot+\frac{\pi}{4} \times(0.15)^{2} \times 1 V_{3} \\
& =0.78 \times 0.04 \times 22+0.78 \times 0.0225 \times V_{3} \\
& \Rightarrow 0.176=0.0624+0.0175 \times \mathrm{NV}_{3} \\
& 70.176-0.0624=0.0175 \mathrm{NV}_{3} \\
& \Rightarrow 0.1136=0.0175 \mathrm{Nn}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow v_{3}=\frac{0.1136}{0.0175} \\
& \Rightarrow v_{3}=6.4 \mathrm{~m} / \mathrm{s} \quad \text { (Ans) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ort } \\
& a_{1}=a_{2}+a_{2} \\
& \Rightarrow A_{1} v_{1}=A_{2} v_{2}+A_{3} v_{3} \\
& \Rightarrow \frac{\pi}{4} \times x_{1}^{2} \times v_{1}=\frac{\pi}{1} \times d_{2}^{2} \times v_{2}+\frac{\pi}{4} \times d_{3}^{2} \times v_{3} \\
& \left.\Rightarrow \frac{7}{7}(0.30)^{2} \times 2.5\right\}=\pi /\left\{(0.20)^{2} \times 2+(0.15)^{2} \times v_{3}\right\} \\
& \Rightarrow\left(30 \times 10^{-2}\right)^{2} \times 2.5=\left(20 \times 10^{-2}\right)^{2} \times 2+\left(15 \times 10^{-2}\right)^{2} \times v_{3} \\
& \Rightarrow(30)^{2} \times 2.5=(20)^{2} \times 2+(15)^{2} \times v_{3} \\
& \Rightarrow 900 \times 2.5=400 \times 2+025 \times \mathrm{v}_{3} \\
& \Rightarrow 2250=800+22.5 \mathrm{~V}_{3} \\
& \Rightarrow 22.50-800=225 \mathrm{~V}_{3} \\
& \Rightarrow v_{3}=\frac{1450}{225}=6.44 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(AS)
(3) Water flows through a Pipe 'AB' $1.2 . \mathrm{m}$. in diameter. velocity of $3 \mathrm{~m} / \mathrm{s}$ through a PPPP. $B C 1.5 \mathrm{in}$ in diameters. At C the pipe branches. Branch CD 0.8 m in diameter and Carries $1 / 3$. of the flow in $A B$. The velocity in the ? breach $C E$ is $2.5 \mathrm{~m} / \mathrm{s}$. Find the discharge end $A B$. velocity in $B C$, velocity $C D$ and the diameter of $C E$?

Ans Given,

$$
\begin{aligned}
& d_{A B}=1.2 \mathrm{~m} \\
& d_{B C}=1.5 \mathrm{~m} \\
& d_{C \theta}=0.8 \mathrm{~m} \\
& d_{C E}=? ?
\end{aligned}
$$

$$
\begin{aligned}
& V_{A B}=3 \mathrm{~m} / \mathrm{s} \\
& V_{B C}=? \\
& V_{C D}=? \\
& V_{C E}=2.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{A B}=? \\
& Q_{A C}=? \\
& Q_{C D}=\frac{1}{3} Q_{A B} \\
& Q_{C E}=\frac{2}{3} Q_{A B}
\end{aligned}
$$

Rate of discharge at $A B$,

$$
\begin{aligned}
Q_{A B} & =A_{A B} \times V_{A B} \\
& =\frac{\pi}{4}\left(Q_{A B}\right)^{2} \times V_{A B} \\
& =\frac{\pi}{4}(1.2)^{2} \times 3=\frac{\pi}{4} \times 1.44 \times 3=0.78 \times 3 \times 1.44 \\
& =3.39 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

from figure,

$$
\begin{aligned}
& Q_{A B}=Q_{B C} \\
\Rightarrow & A_{A B} \times V_{A B}=A_{B C} \times V_{B C} \\
\Rightarrow & \frac{\pi}{4}\left(d_{A B}\right)^{2} \times 3=\frac{\pi}{7} \times\left(d_{B C}\right)^{2} \times V_{B C} \\
\Rightarrow & \frac{\pi}{4} \times 3 \times(1.2)^{2}=\frac{\pi}{4} \times(1.5)^{2} \times V_{B C} \\
\Rightarrow & 3.39=1.76 \times V_{B C} \\
\Rightarrow & V_{B C}=\frac{3.39}{1.76}=1.92 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

\therefore velocity in $B C$ is $1-92 \mathrm{~m} / \mathrm{s}$.
Then, $Q_{C D}=\frac{1}{3} Q_{A B}=\frac{1}{3} \times 3.39=1.131 \mathrm{~m}^{3} / \mathrm{s}$

$$
\begin{aligned}
& Q_{C E}=Q_{A B}-Q_{C D}=3.39-1.131=2.262 \mathrm{~m}^{3} / \mathrm{s} \\
& \text { or } Q_{C E}=\frac{2}{3} Q_{A B}=\frac{2}{3} \times 3.39=2.262 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

velocity in $C D$;

$$
\begin{aligned}
& V_{C D}=\frac{Q_{C D}}{A_{C D}} \quad\left(: Q_{C D}=A_{C D} \times V_{C D}\right) . \\
& \Rightarrow V_{C D}=\frac{Q_{C D}}{\frac{\pi}{4}\left(C_{C D}\right)^{2}} \quad . \quad 1 \\
& \Rightarrow V_{C D}=\frac{1.131}{\frac{\pi}{4}(0.8)^{2}}=\frac{1.131}{\frac{\pi}{4} \times 0.64}=\frac{1.131}{0.502}
\end{aligned}
$$

$$
\Rightarrow V_{L D}=2.25 . \mathrm{m} / \mathrm{s}
$$

\therefore velocity in CD is $2.25 \mathrm{~m} / \mathrm{s}$
diameter of CE can get from the expression, we know, Discharge y at $C E$,

$$
\begin{aligned}
& Q_{C E}=A_{C E} \times V_{C E} \\
& \Rightarrow Q_{C E}=\frac{\pi}{4} \times\left(d_{C E}\right)^{2} \times V_{C E} \\
& \Rightarrow 2.262=\frac{\pi}{9} \times\left(d_{C E}\right)^{2} \times 2.5 \\
& \Rightarrow 2.262=\left(d_{C E}\right)^{2} \times 1.963 \\
& \Rightarrow\left(d_{C E}\right)^{2}=\frac{2.262}{1.963} \\
& \Rightarrow\left(d_{C E}\right)^{2}=1.152 \\
& \Rightarrow d_{C E}=\sqrt{1.152} \\
&=1.073 \mathrm{~m} .
\end{aligned}
$$

\therefore diameter of $C E$ is 1.073 m . (Ans)
(4) Water is flowing through a pipe having diameter e $20 \mathrm{~cm} . \& 10 \mathrm{~cm}$ at section 182 . respectively. The rate of flow through pere is 35 Citre/sel. The section 1 is 6 m , above the datum and section 2 is 4 m , above the datum. Ot the pressure at cress section 1 is $39.24 \mathrm{~N} / \mathrm{cm}^{2}$ then find out the zontenlity of pressure at section 2 .
(An)

- Datum line

Given,

$$
\begin{array}{ll}
d_{1}=20 \mathrm{~cm}=0.20 \mathrm{~m} & z_{1}=6 \mathrm{~m} . \\
d_{2}=10 \mathrm{~cm}=0.10 \mathrm{~m} & z_{2}=4 \mathrm{~m} \\
Q=35 \mathrm{l} / \mathrm{s} & g=9.81 \\
\Rightarrow Q=35 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} & f=1000 \mathrm{~kg} \mathrm{~m}^{2} \\
Q_{1}=39.24 \mathrm{~N} / \mathrm{cm}^{2}=39.24 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2} \\
P_{2}=? &
\end{array}
$$

According to Berchoulity e-quation,

$$
\begin{aligned}
& \frac{P_{1}}{p g}+z_{1}+\frac{v_{1}^{2}}{2 g}=\frac{P_{2}}{P g}+z_{2}+\frac{v_{2}^{2}}{2 g} \\
& Q_{1}=Q_{2}=Q=35 l / \mathrm{s} \\
& Q_{1}=A_{1} V_{1} \\
& \Rightarrow 35 \times 10^{-3}=\frac{\pi}{9} \times(d)^{2} \times v_{1} \\
& Q_{2}=A_{2} V_{2} \\
& =\frac{\pi}{4} \times(0.20)^{2} \times v_{1} \\
& 735 \times 10^{-3}=0.78 \times 0.04 \times 4 . \\
& \Rightarrow 35 \times 10^{-3}=0.0312 \times V_{1} \\
& \Rightarrow 0.035=0.0312 \times V_{1} \\
& \Rightarrow V_{1}=\frac{0.035}{0.0312}=1.12 \mathrm{~m} / \mathrm{s} \\
& \Rightarrow 35 \times 10^{-3}=\frac{\pi}{9} \times\left(9_{2}\right)^{2} \times V_{2} \\
& \Rightarrow 0.035=0.78 \times(6.10)^{2} \times v_{2} \\
& =0.78 \times 0.01 \times v_{2} \\
& \Rightarrow 0.035=0.0078 \times \mathrm{V}_{2} \\
& \Rightarrow V_{2}=\frac{0.035}{0.0078} \\
& =4.48 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Then aceording to Bernowits equation,

$$
\begin{aligned}
& \frac{P_{1}}{P g}+z_{1}+\frac{v_{1}^{2}}{2 g}=\frac{P_{2}}{f g}+z_{2}+\frac{v_{2}^{2}}{2 g} \\
\Rightarrow & \frac{59.24 \times 10^{4}}{1000 \times 9.81}+6+\frac{(1.1)^{2}}{2 \times 9.81}=\frac{P_{2}}{1000 \times 9.81}+4+\frac{(1.4)^{2}}{2 \times 9.81} \\
\Rightarrow & \frac{39.24 \times 104}{9810}+6+\frac{1.21}{19.62}=\frac{P_{2}}{9810}+4+\frac{19.36}{19.62} \\
\Rightarrow & 40+6+0.0 .61=\frac{P_{2}}{9810}+1+0.986 \\
\Rightarrow & 46.061=\frac{182}{9810}+4.986 \Rightarrow \frac{P_{2}}{4810}=41.075
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow V_{2} & =41.075 \times 9810 \\
& =402945.75 \mathrm{~N} / \mathrm{m}^{2} \\
& =40.29 \mathrm{~N} / \mathrm{cm}^{2} \quad \text { (Ans) }
\end{aligned}
$$

(b) An of l of specific gravity 0.8 is flowing through a. venturimefert having inlet diameter e 20 cm . and throughdiameter 10 cm . The oil mercury differential manometers shows a reading of 25 cm . Calculate the discharge of oil through horizontal venturimeter taking $C d=0.98$?
(dry) Given,

$$
\begin{aligned}
& d_{1}=20 \mathrm{~cm}=0.20 \mathrm{~m} \\
& d_{2}=10 \mathrm{~cm}=0.10 \mathrm{~m}
\end{aligned} \quad \mathbb{C}_{d}=0.98
$$

$S_{x}=$ specific gravity of $\mathrm{Dil}=0.8$
$S_{h}=$ specific gravity of mercury $=13.6$
$x=$ Differential reading $=25 \mathrm{~cm}=0.25 \mathrm{~m}$
According to case - I,

$$
\begin{aligned}
h & =x\left[\frac{s n}{s_{x}}-1\right] \\
& =0.25 \times\left[\frac{136}{0.8}-1\right]=0.25 \times(17-1)
\end{aligned}
$$

Pitot-Tube 7
If is a device used for measuring the velocity of flow at any point th a pipe ore a channel. It is based on the principle that if the velocity of flow at a point becomes zero, the pressure there is increased due to the conversion of the kinetic energy into pressure energy. In its simplest former, the pitot-tube consists of a glass tube, bent at right angles as shown in figure.

Pitot-tube
The tower end, which is bent through 90° is directed in the up steam direction as shown in figure. The liquid rises up in the tube due to the conversion of kinetic energy into pressure energy. The velocity is determined by measuring the rise of liquid in the tube.
Consider two points (1) and (2) at the same level in such a way that point (2) is just as the inlet of the pitot-tube and point (1) is fare away from the tube.
Let $P_{1}=$ intensity of pressure at point (i)
$V_{1}=$ velocity of flow at (1)
$P_{2}=$ pressure at point (2)
$v_{2}=$ velocity at point (2), which is Zero
$H=$ elepth of tube in the liquid
$h=$ rise of liquid in the tube above the free surface.

Applying Berenouti's equation at points (1) and (2), we get

$$
\frac{p_{1}}{p g}+\frac{v_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{p g}+\frac{v_{2}^{2}}{2 g}+z_{2}
$$

But $Z_{1}=Z_{2}$ as points (1) and (2) are on the same lite and $V_{2}=0$

$$
\begin{aligned}
& \frac{P_{1}}{P g}=\text { pressure head } \cot (1)=H \\
& \frac{P_{2}}{P g}=\text { pressure head of }(2)=(h+H)
\end{aligned}
$$

Substituting these values, we get

$$
\begin{aligned}
& \therefore \quad H+\frac{v_{1}^{2}}{2 g}=(h+H) \\
& \therefore h=\frac{v_{1}^{2}}{2 g} \text { ore } v_{1}=\sqrt{2 g h}
\end{aligned}
$$

This is the orcetical velocity. Actual velocity is given by

$$
\left(V_{1}\right)_{\text {act }}=c_{V} \sqrt{2 g h}
$$

where $C_{V}=$ coefficient of pitot-tube
\therefore Velocity at any point

$$
v=c_{r} \sqrt{2 g h}
$$

CHAPTER -OS\} ~
RIFICE
Introduction \Rightarrow
Orifice is a small opening of any ereass-section (such as extecular. triangular. Rectangular etc.) on the side ore at the bottom of s a tank, through which a flexed is flowing. f mouth piece is a shore length of a pipe which is two are to three fires its diameter e in length, fitted in a tank ore vessel containing the fluid. Dredfices os well as mouthpieces once used for measuring the rote of for? Of fluid.

Classification o Orifices \Rightarrow
The orifices are classified on the basis of their size, shape, nature of discharge and shape of the upsteam edge. The following are the important classifications:-
(1) The orifices are classified as small orifice or large orifice depending upon the size of orifice and head of liquid from the centre of the orifice. If the head of liquid from the centre of Drabice is more than five times the depth of profile, the orifice is called small orifice. And if the head of liquids is less thenffere times the strath of orifice, it is known as large orifice.
2) The orifices are classified as (i) Circular orifice,
(ii) Triangular orifice (iii) Rectangular e orifice and
(iv) Square orifice depending upon their Crose-sectional arcane
3) The brifiess cere classified of (i) shourp-edoyed orifice and a
(ii) Enell-mouthad orifice sepersing upon the shape of custrex mom edgy of the orifices-
(4) The orifices aurce classified as
(i) Free discharging orifices and (ii) Dawned ere subarnenged orifices depending upon the nature of olfscharges.
The submerged orifices are further clastiped as (a) fully submerged orifices and (b) partially submerged orifices.

Flow through an Orifice it
Consider a tank fitted with a circular orifice in onesof its sides as shown in figure.
Let H be the head of the liquid above the centre of the artifice. The liquid blowing through the orifice forms a jet of liquid whose area of cross-section is less than that of orifice. "The area of jet of thud goes on decreasing and at a section B-C , the area is minimum. This section is approximately at a distance of half if diameter of the orifice. At this section, the streamlines are straight and parallel to each other and perpendicular to the plane of the orifice. This section is called "Vence-Contracte". Beyond this section, the set diveroges-and is attracted th the downwind direction by the gravity.

Consider two points 1 and 2 as shown in figure. Point 1 is inside the tank and point 2 at the vena-contracta. Let the flow is steady and at a
 Constant head H. Applying
bernouti's equation at point. Tank with an orifice) 1 and 2.

But

$$
\frac{P_{1}}{\rho g}+\frac{v_{1}^{2}}{2 g}+z_{1}=\frac{P_{2}}{\rho g}+\frac{v_{2}^{2}}{2 g}+z_{2}
$$

But $Z_{1}=Z_{2}$

$$
\therefore \frac{P_{1}}{f g}+\frac{v_{1}^{2}}{2 g}=\frac{p_{2}}{f^{g} g}+\frac{v_{2}^{2}}{2 g}
$$

Now $\frac{P_{1}}{f g}=H \quad \frac{P_{2}}{f g}=0$ (atmospheric pressure)
V_{1} is very small in comparison to V_{2} as area of tank is virug large as compared to the are of the Set of liquid.

$$
\begin{aligned}
H & +0=0+\frac{v_{2}^{2}}{2 g} \\
\therefore V_{2} & =\sqrt{2 g H}
\end{aligned}
$$

This is theoretical velocity. Actual velocity will be less than this value.

HYDRAULIC CO-EFFICIENTS \Rightarrow
The hydraulic coefficients are :-
1] Co-abficient of velocity, c_{1}
2] Coefficient of Contraction, C_{c}
3] Co-efficiens of discharge, C_{d}
(1) Core doicient of Velocity (cu) \rightarrow

It is defined as the ratio between the adual velocity of jet of liquid at vena-Contracta and the theoretical of Jet: Ct is denoted by C_{v}, and mathematically ir C_{v}^{\prime} is given' as

$$
C_{v}=\frac{\text { Actual velocity of vet ont vena Contricicta }}{\text { Theoretical velocity }}
$$

$=\frac{V}{\sqrt{g^{2}+1}}$, there $V=$ actual velocity,
$\sqrt{2 g h}=$ Theoretical velocity
The value of c_{v} varies from 0.95 to 0.99 fore ditbercent. orifices, depending on the shape, size of the orifice and on the head under e which flow takes place.
generally, the value of $C_{v}=0.98$ is taken fore sharp wedged orifices.
(2) Co-effrient of Contraction (C_{C}):-

It is defined as the ratio of the area of the jet at vena-contracta to the area of the orifice. If is denoted by Qc.

Let $a=$ area of orifice and

$$
\begin{aligned}
a_{c} & =\text { area of Jet at vena-contralta } \\
a_{e} & =\frac{\text { area of set at vena-contracta }}{a_{\text {rena of of orifice }}} \\
& =\frac{a_{c}}{a}
\end{aligned}
$$

The value of C_{c} varies from 0.61 to 0.69 depending on shape and size of the orifice and head of liquid under which flow takes place. In general, the value of c_{c} may be taken as $0: 64$.
(3) Co-efficients of Discharge (Cd):-

It is defined as the reaction of the actual discharge from an orifice to the theoretical discharge from the orifice. It is denoted by C_{d}. If Q is actual discharge and $\mathbb{Q}_{\text {th }}$ is the theoretical
discharge then mathematically, Cd_{d} is given as

$$
\begin{aligned}
C_{d}=\frac{Q}{Q_{\text {sh }}} & =\frac{\text { Actual velocity } \times \text { Actual Area }}{\text { Theoretical velocity } \times \text { Theoretical area }} \\
& =\frac{\text { Actual velocity }}{\text { Theoretical velocity }} \times \frac{\text { Actual Area }}{\text { Theoretical area }}
\end{aligned}
$$

$$
C_{d}=C_{V} \times C_{c}
$$

The value of C_{d} varies' from 0.61 to 0.65 . For general purpose the value. of C d is taken os 0.62 ..

NOTCH
Introduction:-
A notch is a device used for measuring the rate of flow of a liquid through a small channel or a tank. It may be defined as an opening in the side of a tank or a small channel in such a roll that the liquid surface in the tancerechannat is below the top edge of the opening.
A wire is a Concrete or masonary structure, placed in an open channel over e which the flow occurs. It is generally in the form of vertical wall, with a sharp edge at the top, running all the way acres the open channel. The notch is of small size while the weir is of a bigger size. The notch re generally \therefore made of metallic plate) while write is made of Concrete or masonary structure.

1. Nappe on Vein:- The sheet of water flowing through a notch ore over a were is called Nappe or Vein.
2. Crest aresill - The bottom edge of a notch or a top of a weir over which the octan flows, is known as the. sill es or Crest.

Classification of Notes and weirs \Rightarrow
The notches arse classified as:
(1) According to the shape of the opening:
(a) Rectangular notch
(b) Triangular notch
(c) Trapezoidal notch and.
(d) stepped notch
(2) According to the effect of the sides on the nappe:
(a) Notch with end contraction
(b) Notch without end contraction or Suppressed notch

Weirs are classified according to the shape of the opening, the shape of the crest, the erect of the side on the nape and. nature of dracharge. The following are important classification. (a) According to the shrupe of the opening:
(i) Rectangular wain
(ii) Triangular weir and
(iii) Trapezoidal weir (cipollayti weir)
(b) According to the shape of the crest:-
(i) Sharp-erested wire
(ii) Broad-Crested weir
(iii) Narrop-Crested weir and
(iv) Oegre-shaped weir
(c) According to the effect or sides on the emerging nappe:
(t) Wear with end contraction and (i) Wire without end Conte cation
(1) ischarge Over a Rectangular Notch on Deircy

The expression for discharge over e a rectangular e troth ore wis, is the same.

(c) Section at
... Crest
(b) Rectangular, writs

- (Rectangular notch and weir)

Consider a rectangular notch or weir provided in a channel Careriong water as shown in figure.

Let $H=$ bead of water over the crest $L=$ Length of the notch or wain
For finding the discharge of water flowing overs the wain ore roth, consider an elementary horizontal strip of water of thickness dh and length L at depth h from the free surface of water is shown in figure.
The area. of strip $=L x d h$
and theoretical velocity of water flowing through strip $=\sqrt{2}{ }^{\text {ah }}$
The discharge de e, through strip is
i. $d Q=C_{d} \times$ Area of strop \times Theoretical Velocity

$$
=C_{d} \times L_{x} d h \times \sqrt{2 g h}
$$

where $C_{d}=$ co-ebtresent of discharge

The total discharge, C, for the whole noted ore weire is deferronined by integrating equation (i) between the limits ' D and $t 1$.

$$
\begin{aligned}
\therefore Q & =\int_{0}^{H} C_{d} \cdot L \cdot \sqrt{2 g h} d h \\
& =C_{d} \times L \times \sqrt{2 g} \int_{0}^{H} h^{1 / 2} d h \\
& =C_{d} \times L \times \sqrt{2 g}\left[\frac{h^{1 / 2}+1}{\frac{1}{2}+1}\right]_{0}^{H} \\
& =C_{d} \times L \times \sqrt{2 g}\left[\frac{h^{3 / 2}}{3 / 2}\right]_{0}^{H} \\
& =\frac{2}{3} C_{d} \times L \times \sqrt{2 g}[H]^{3 / 2}
\end{aligned}
$$

Discharge Over a Triangular Notch or Weir \Rightarrow
The expression for the discharge over a triangular notes ore weir is the same. It is derived as:

Let $H=$ head of water above the V-notch

$$
\theta=\text { angle of notch }
$$

Consider a horizontal strip of water of thruleness d at a a depth of h from the free surface of water as shown in figure e.

From figure (b), we have

$$
\begin{aligned}
& \quad \tan \frac{\theta}{2}=\frac{A C}{O C}=\frac{A C}{(H-h)} \\
& \therefore A C=(H-h) \tan \frac{\theta}{2}
\end{aligned}
$$

Width of strip $=A B=2 A C$

$$
=2(H-h) \tan \theta / 2
$$

$$
\therefore \text { Aero of Strap }=2(H-h) \tan 0 / 2 * \text { dh }
$$

(a)

(b)

The theoretical velocity of water through strip $=\sqrt{2 g h}$
\therefore Discharcye, through the strip,
$d q=C_{d} \times$ Area of strop \times Velocity (theoretical)

$$
\begin{aligned}
& =C_{d} \times 2(H-h) \tan \theta / 2 \times d h \times \sqrt{2 g h} \\
& =2 C_{d}(H-h) \tan \theta / 2 \times \sqrt{2 g h} \times d h
\end{aligned}
$$

\therefore Total discharge,

$$
\begin{aligned}
Q & =\int_{0}^{H} 2 C_{d}(H-h) \tan \theta / 2 \times \sqrt{2 g h} \times d h \\
& =2 C_{d} \times \tan \theta / 2 \times \sqrt{2 g} \int_{0}^{H}(H-h) h^{1 / 2} d h \\
& =2 \times C_{d} \times \tan \theta / 2 \times \sqrt{2 g} \int_{0}^{H}\left(H h^{1 / 2}-h^{3 / 2}\right) d h \\
& =2 \times C_{d} \times \tan \theta / 2 \times \sqrt{2 g}\left[\frac{H h^{3 / 2}}{3 / 2}-\frac{h^{5 / 2}}{5 / 2}\right]_{0}^{H} \\
& =2 \times C_{d} \times \tan \theta / 2 \times \sqrt{2 g}\left[\frac{2}{3} H \cdot H^{3 / 2}-\frac{2}{5} H^{5 / 2}\right] \\
& =2 \times C_{d} \times \tan \theta / 2 \times \sqrt{2 g}\left[\frac{2}{3} H^{5 / 2}-\frac{2}{3} H^{5 / 2}\right] \\
& =2 \times C_{d} \times \tan \theta / 2 \times \sqrt{2 g}\left[\frac{4}{15} H^{5 / 2}\right] \\
& =\frac{8}{15} C_{d} \times \tan \theta / 2 \times \sqrt{2 g} \times H^{5 / 2}
\end{aligned}
$$

Fore a right angled V-notch if $C_{d}=0.6$

$$
\theta=90^{\circ}, \quad \therefore \tan \theta / 2=1
$$

Discharge, $Q=\frac{8}{15} \times 0.6 \times 1 \times \sqrt{2 \times 9.81} \times H^{5 / 2}$

$$
=1.417 H^{5 / 2}
$$

Loose of Energy Tn popes y
When a fluid is flowing through on pipe, the thin "xperikerces some resistance due to which some of the energy of fluid is lost. This loss of energy is classified as i-

Energy losses

1. Major Energy losses

This is due to friction and it is calculated by the following formulas:
(a) Darcy-Weisbach foronoula
(b) Cherry's formula
2. Minor Energy losses \downarrow.
This is dux to
(a) Sudden expansion , of pe
(b) Sudden Contraction of pipe
(c) Bend in pipe
(c) pipe fittings eft.
(e) An obstruction in pipe

LOSS OK Energy (O RHEAD) DUE TO FRICTION \Rightarrow
(a) Darcy - Weisbach formula:-

The toss of head (ore energy) in pose pipes due to friction is calculated from . Darcy-weisbach equation which has been derived in chapter e to and is given by

$$
\begin{equation*}
h_{5}=\frac{4 \cdot 5 \cdot L \cdot V^{2}}{9 \times 2 g} \tag{1}
\end{equation*}
$$

where hp $=$ less of head due to, friction.
$f=$ Co.entivient of friction which is a function of.
Reynolds number

$$
=\frac{16}{1 e} \text { for } R_{e}<2000 \text { (viscous blow) }
$$

$=\frac{0.079}{R_{R}^{1 / 4}}$ for R_{e} varying from 4000 to 10^{6}
$L=$ length of pipe
$V=$ mean velocity of blow
$d=$ diameter of pipe
(b) Chezy's Formula for loss of head due to friction in pipes:-

Refer to chapter to article to in which expression for to is is head due to friction in pipes is derived.
Equation (iii) of andtcle to is

$$
\begin{equation*}
h_{b}=\frac{t^{\prime}}{\rho_{g}} \times \frac{P}{A} \times L \times v^{2} \tag{2}
\end{equation*}
$$

where $h_{5}=$ loss of head due to friction
$-p=$ welted perimetion of pipe
$A=$ Area of cross section of pipe
$1 . L=$ length of Pipe
$V=$ mean velocity of flow
and :1
Now the ratio of $\frac{A}{P}\left(-\frac{\text { Area of blow }}{\text { Perimeter }(\omega \text { welted })}\right)$ is called hydraulic mean depth ore Hydraulic radius and is denoted by m.
\therefore Hydraulic mean depth, $m=\frac{A}{P}=\frac{\frac{\pi}{4} d^{2}}{\pi d}=\frac{d}{4}$
Substituting $\frac{A}{P}=m$ or $\frac{P}{A}=\frac{1}{m}$ in equation (2),
*: we gat, $h_{b}=\frac{f^{-1}}{P g} \times L \times v^{2} \times \frac{1}{m}$ or $v^{2}=h_{b} \times \frac{f g}{f^{4}} \times m \times \frac{1}{L}$.

$$
\begin{aligned}
\Rightarrow V & =\sqrt{\frac{f g}{f^{\prime}} \times m \times \frac{h_{b}}{L}} \\
& =\sqrt{\frac{f g}{f^{\prime}}} \sqrt{m \frac{h_{s}}{L}}
\end{aligned}
$$

$$
=\frac{\rho g}{f^{\prime}} \times m \times \frac{h}{L}
$$

Let $\sqrt{\frac{1 g}{f}}=c$, where c is a constant known as chez's constant and $\frac{h_{t}}{L}=i$, where i is loss of hoad peri unit length of pipe.
substituting the values of $\frac{\sqrt{9 g}}{f}$ end $\sqrt{\frac{h y}{L}}$ in equation -(3)
we. get, $V=c \sqrt{m i}$
Equation. (4) is known as cherry's formula. Thus the loss of head due to friction in pe from cherys formula can be obtained if the velocity of flow through pipe and also the value of C is known. The value of m for pipe is always equal to d $d / 4$.
MINOR ENERGY (HEAD) LOSSES 7
The toss of head or energy due to friction in a pipe is known as migore loss while the loss of energy, due to change of velocity of the following fluid in magnitude ore direction is called minor loss of energy. The minor loss of energy y (or head) includes the following cases:

1. Loss of head due to sudden enlargement,
2. Loss of head due to sudden contraction,
3. Loss of head the entrance of a pipe
4. Loss of head at the exit of a pipe
5. Loss of head due to an obstruction in a.pipe,
6. Loss of head due to bend in the pipe,
7. Loss of head in various pipe fittings.

In case of long pipe the above losses are small" as compared with the loss. of head due to friction and hence they: are collided minor losses and even may be neglected with out serious error. but in case of a short pipe, these losses ane comparable with the loss of head due to friction.

HYDRAULIC GRADIENT AND TOTAL ENERGY LINE B
The concept of hydreculic gradient tine and trial energy tine is very useful. in the study of flow of flanks through pipes "They 'are alefined as':
Hydraulic Gradient Line \Rightarrow
It is defined as the tine which gives the sum of pressing. hided $\left(\frac{P}{W}\right)$ and datum head (Z) of a flowing fluid in a pipe with respect to some reference tine or it is the line which is obtained by joining the top of all vertical ordinates, showing the pressure head (plo of a flowing fluid in a pipe from the centre of the pipe. It is briefly written. as H.G.L. (Hydraulic Gradient Line).

Total Energy Line \Rightarrow
It is defined as the tine which gives the sum of pressure head, datum head and kinetic head of a flowing fluid in a pipe with respect to 'some reference tine. It is' also defined as the line which is obtained by joining the tops of all vertical ordinates showing the sum of pressure head and kinetic head from the centre of the pipe. et is briefly written as T.EL (Total Energy Ene).

FrY
Introduction \Rightarrow
The liquid comes out in the form o sect from the outlet 'of a nozzle, which is fitted to a pipe through which the liquid is flowing under e pressure. If some plate, which may be fixed or moving, is placed in the path of the jet, a force is exerted by the jet on the plate. This force is obtained from Newton's Ind law of motion or from impulse-momentum equation. Thus impact of jet means the force exerted by the jet on a plate which may be stationary or moving. In this chapter, the following cases of the impact of jet ie. the force exerted by the jet on a plate, will be considered.
(1) Force exerted by the set on a stationary plate when
(a) plate is vertical to jet
(b) plate is inclined to the jet, and
(c) Plate is curved.
(2) Force exerted by the jet on a moving plate, when
(a) plate is vertical to jet,
(b) plate is inclined to the Jet and
(c) plate is curved.

Force Exerted By The Jet On a stationary
Vertical plate 7
Consider a jet of water coming out from the nozzle, strikes a flat vertical plate as shown in the below figure.

(Force exerted by set on vertical plate.)
Let $V=$ velocity of the jet
$d=$ diameter of the jet
$a=$ area of cross section of the Jet $\leq \frac{\pi}{4} d^{2}$
The jet after striking the plate, will move along the plate: But the plate is at right angles to the jet.
Hence the jet after Striking, with get deflected through 90°. Hence the component of the velocity of jet in the direction of jet, after striking will be zero.
The force exerted by the jet on the plate in the direction of jet.

$$
\begin{aligned}
& \boldsymbol{F}_{x}=\text { Rate of change of momentum in the direction of } \\
& \text { force } \\
&=\frac{\text { Initial momentum - Final momentum }}{\text { Time }}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{\text { (Mass Initial velocity }- \text { Mass } \times \text { Final velocity) }}{\text { Time }} \\
& =\frac{\text { Mass }}{\text { Time }} \text { (Initial velocity-Final velocity) } \\
& =\text { Mass } / \mathrm{sec} \text {) } \times \text { (velocity of jet before striking } \\
& \text { - velocity of jet after striking) } \\
& =\rho a v(v-0) \\
& =f a V^{2} \tag{1}\\
& \text { Time } \\
& =\frac{\text { Mass }}{\text { Time }} \text { (Initial velocity-Final velocity) } \\
& =\text { (ais } / \mathrm{sec} \text {) } \times \text { (velocity of jet before striking } \\
& \text { (} \because \text { mass } / \mathrm{sec}=f \times a N \text {). }
\end{align*}
$$

Force Exerted by a jet en stationary, Curved plate \Rightarrow
(A) Jet strikes the curved plate at the centre :Let a jet of water strikes a fixed curved' plate at the centre as shown in the below Effigure. The jet after striking the plate, comes out with the same velocity it the plate is 6 mooth and there is no loss of energy due, to impact of the jet, in the tangential direction of the curved plate. The velocity at outlet of the plate can be resolved into two components.
One in the direction of set and other perpendicular e to the direction of the jet.

Components of velocity in the direction of jet $=-V \cos \theta$

(Jet striking a fixed curved plate at centre)
(-ve sign is taken as the velocity at outlet is in the opposite direction of the jet of water coming out from Nozzle).
Component of -velocity perpendicular to the jet $=\dot{V} \sin \theta$ Forced exerted by the set in the direction of vet,

$$
F_{x}=\text { moss pere } \sec x\left[V_{1 x}-v_{2 x}\right]
$$

where, $V_{1 x}=$ Initial velocity in the direction of jet $=V$
$V_{2 x}=$ Final velocity in the direction of jet $=-V \cos \theta$

$$
\begin{align*}
\therefore \quad F_{x} & =\operatorname{fav}[v-(-v \cos \theta)] \\
& =\operatorname{fav}[v+v \cos \theta] \\
& =\operatorname{fan}^{2}[1+\cos \theta] \tag{2}
\end{align*}
$$

Similarly. $F_{y}=$ mass per sec $\times\left[V_{1 y}-V_{2 y}\right]$,
where, $v_{1 y}=$ Initial velocity in the direction of $y=0$
$V_{2 y}=$ Final velocity in the direction of $y=V \sin \theta$

$$
\begin{array}{r}
\because \quad F_{y}=\rho_{a} v[0-V \sin \theta] \\
\quad=-\rho_{a} a v^{2} \sin \theta \tag{3}
\end{array}
$$

2-ve sign means that force is acting in the downwarcod dircestir. En this case the angle of defection of jet $=\left(180^{\circ}-\theta\right)$
(B) Jet Strikes the Curved plate at one end tangentially when the plate is symmetrical :-
Let the set strikes the curved fixed plate at one end tangentially as shown in figurine. Let the cur cured plate is symmetrical about x-axis. Then the angle made by the tangents at the two ends of the plate will be same.

Let $V=$ velocity of jet of water
$\theta=$ Angle made by set with x-axis at inlet tip of the curved plate If the plate is smooth and loss of energy due to impact is Zero, then the velocity of water \& at the outlet tip of the curved plate will be equal to V. The forces exerted by the Set of water in the dimensions of x and y are

$$
\begin{align*}
F_{x} & =(\text { mass } / \sec) \times\left[v_{1 x}-v_{2 x}\right] \\
& =f_{a} v[v \cos \theta-(-v \cos \theta)] \\
& =\rho_{a} v[v \cos \theta+v \cos \theta] \\
& =2 \rho_{a} v^{2} \cos \theta \tag{4}\\
F_{y} & =\rho_{a} v\left[v_{1 y}-v_{2 y}\right] \\
& =\rho a v[v \sin \theta-v \sin \theta]=0
\end{align*}
$$

(C) Jet strikes the Curved plate at one end tangentially when the plate is unsymmetrical:-
When the Curved plate is ins yometrical about. x-axis, then :A angle made by the tangents drawn at the inlet and outlet tips of the plate with x-axis, will be different.
Let $\theta=$ angle made by tangent at inlet tip with x-axis. $=$ angle made by tangent at out lett tip with x-axis The two components of the velocity at inlet once

$$
V_{1 x}=v \cos \theta \text { and } V_{1 y}=V \sin \theta
$$

Fore on the Curved plate when the plate is moving if the direction of Jet :-

Let a jet of water strikes a curved plate cat the centre of the plate which is moving with a uniform velocity in the direction of the jet as shown in the figures.

Let $V=$ Absolute velocity of jet
$a=$ area of vet
$u=$ velocity of the plate
plate
in the direction of the vet?
Tet striking a Curved moving) plate

- Relative velocity of the jet of lowater or .., a The velocity with which diet strikes the curved plate $=(V-u)$.
- If plate is smooth sind the loss of energy. clue to impact to jet is zero, then the velocity with which the jet will be leaving the Curved vane $=(v-u)$.
- This velocity can be restored into two components, one in the direction of the jet and other perpendicular to the direction of the Jet
Component of the velocity in the direction of jet

$$
=-(v-u) \cos \theta
$$

(-vesign is taken as at the outlet, the component is in the opposite direction of the jet).
Component of the velocity in the direction perpendicular to the direction of the jet $=(v-u) \sin \theta$

Mass of the water striking the plate
$=f \times a \times$ Velocity with which jet strokes the plate

$$
=-\quad \operatorname{ran}(V)
$$

\therefore Force exerted by the jet of water on the curved plate in the direction of the vet,
$F_{x}=$ mass striking persec X [initial velocity with which vet strikes the plate in the direction of vet)

- Final velocity]

$$
\begin{align*}
& =f_{a}(v-u)[(v-u)-(-(v-u) \cos \theta)] \\
& =f_{a}(v-u)[(v-u)+(v-u) \cos \theta] \\
& =f_{a}(v-u)^{2}[1+\cos \theta] \tag{9}
\end{align*}
$$

Work done by the jet on the plate pere second $=F_{x} \times$ Distance travelled per secund in the direction

$$
\begin{align*}
& =F_{x} \times u \\
& =f_{a}(v-u)^{2}[1+\cos v] u \\
& =f_{a}(v-u)^{2} \times u[1+\cos u] \tag{10}
\end{align*}
$$ of x

Force Exerted by a jet of water on an Unsymmetries Moving curved plate when jet strikes Tangentially at one of the Tips :
(Tet stroking a moving $\binom{$ jet stroking a moving }{ curved Vane at one of the tips } .

The above figure shows a jet of, water string a moving, curved plate (also culled vane) tangentially, at one of its tips. As the jet strikes tangentially, the loss of energy due to impact of the jet will be zero. In this case as plate is moving, the velocity with which jet of water strikes is equal to the relative velocity of the vet with respect to the plate. Also as the plate is moving in diffiferent direction of the set, the relative velocity at inlet will be equal to the vector e deference of the velocity of vet and velocity of the plate at inlet.

Let $V_{1}=$ Velocity of the jet at inlet
$\mu_{1}=$ velocity of the plate (vane) at inlet
$V_{\pi_{1}}=$ Relative velocity of jet and ploce at inlet
$\alpha=$ Angle between the direction of the jet and direction of motion of the plate, also called guide blade angle.
$\theta=$ Angle made by the relative velocity ($V_{r_{i}}$) with the drunection of motion at inlet also called vane angle at inlet
$V_{w 1}$ and $V_{f_{1}}$ = The components of the velocity of the jet V_{1}, in the direction of motion and perpendicular e to the direction of motion of the vane respectively.
$V_{w_{1}}=$ it is also known as velocity of whir at inlet
$V_{61}=$ It is also known as velocity of flow at inlet
$V_{2}=$ velocity of the jet, leaving the vane on velocity of vet at outlet of the vane.
$u_{2}=$ velocity of the vane at out let
$V_{k_{2}}$ = Relative velocity of jet with respect to the vane at outlet
$\beta=$ Angle made by the velocity V_{2} with the direction of motion of the vane at outlet.
$\phi=$ Angle made by the relative velocity $\left(V_{\pi_{2}}\right)$ with the direction of motion of the vane at Out let and also called vane angle at outlet
$V_{w i 2}$ and $V_{52}=$ Components of the velocity V_{2}, in the direction of motion of vane and perpendicular to the direction of motion of vane at out let $V_{\text {wis }}=$ It is also called the velocity of whirl at outlet - $V_{r_{2}}=$ velocity of rlow at outlet

The triangles ABD and EGH are called the velocity triangles at inlet and outlet: These velocity triangles are drain as given below:-
(1) Velocity Triangle at Inlet : \rightarrow,

Take any point A and draw a line $A B=V_{q}$ in magnitude and direction which means line $A B$ makes an angle α with the horizontal line $A D$. Next draw a line $A C=u_{1}$ in magnitude. Join C to B. Then $C B$ represents the relative velocity of the Set at inlet. it the loss of energy et inlet due to impact is zeros, Then C. must be in the tangential direction to the vane af inlet, From B drew a vertical line $B D$ in the downward direction tomest the horizontal line $A C$ produced of D.

Then $B D=$ Represents the velocity of blow at inlet $=V_{51}$
$A D=$ Represents the velocity of whir at inlet $=V_{12 i}$
$\angle B C D=$ Vane angle at inlet $=0$
$\angle B A C=\alpha$
(2) Velocity Triangle at Outlet:-

If the vane Surface is assumed to be very smooth, the loss of energy due to fraction will be zero. The water will be gliding over the surface of the vane with a relative velocity equal to $V_{r 1}$ and wilt come out of the vane with a relative veloce V_{π} This means that the relative velocity at outlet $V_{r_{2}}=V_{r 1}$. And also the relative velocity at outlet should be in tangential direction to the Vane at outlet.

Draw EG in the tangential direction of the Vane at out lest and cut $E \eta=V_{\mathrm{K}_{2}}$.
From G, draw a line GF in the direction of vane of outlet and equal to u_{2}, the velocity of the Vane at outlet.
Join EF, then EF represents the absolute velocity of the jet at outlet in magnitude and direction. From E draw a vertical line $E H$ to meet line GF produced at H.

Then $E H=$ velocity of blow at outlet $=V_{B_{2}}$.
$E H=$ velocity of whin at outlet $=V_{w_{2}}$
$\angle E G F=\Phi=$ Angle of bane at outlet
$\angle E F H=\beta=$ Angle made by V_{2} with the direction of motion of
vane at outlet.
If the vane is smorth and is having velocity in the direction of motion inlet and outlet equal then we have

$$
u_{1}=u_{2}=u=\text {-velocity vil k vane in the direction of }
$$ motion

and $V_{\pi_{1}}=V_{r_{2}}$.
Now mass of water striking vane per sec $=f a V_{r y}-(1)$ where $a=$ Area of jet of water

$$
V_{r_{1}}=\text { Relative velocity at inlet. }
$$

\therefore Force exerted by the vet in the direction of motion $F_{x}=$ mass of water striking per sec X

- Enstial velocity with to which set strikes in the direction of motion- Formal velocity of - Set in the direction of motion]

But initial velouty with which set strikes the vane $=V_{r_{1}}$ (3)

The component of this velocity in the direction of motion

$$
=v_{\pi_{1}} \cos \theta=\left(v_{\omega_{t}}-u_{1}\right)
$$

Esimilarly, the component of the relative velocity at outlet in
*The direction of motion $=-V_{r 2} \cos \phi$

$$
=-\left[u_{2}+v_{w_{2}}\right] .
$$

-Ne sign is taken as the component of $V_{r_{2}}$ in the direction of mater is in the opposite direction.
Substituting the equation (*) and all above values of the velocities in equation (2), we get

$$
\begin{align*}
F_{x} & \left.=\operatorname{fav}_{r_{1}}\left[\left(v_{w_{1}}-u_{1}\right)-\left(u_{2}+v_{w_{2}}\right)\right\}\right] \\
& =f^{\prime} a v_{r_{1}}\left[v_{w_{1}}-u_{1}+u_{2}+v_{w_{2}}\right] \\
& =f a v_{r_{1}}\left[v_{w_{1}}+v_{w_{2}}\right] . \quad\left(\because u_{1}-u_{2}\right) . \tag{3}
\end{align*}
$$

Equation(3) is true only when angle β shown in figure is an acute angle. If $\beta=90^{\circ}$, the $V_{\omega_{2}}=0$, then equation (3) becomes as, $F_{x}=\rho_{a} v_{r_{1}}\left[V_{\omega_{1}}\right]$
If β is an obtuse angle, the expression for F_{x} well become

$$
F_{x}=P_{a} V_{r_{1}}\left[V_{\omega_{1}}-V_{\omega_{2}}\right]
$$

Thus in general, f_{x} is written as $F_{x}=f a V_{r_{1}}\left[V_{\omega_{1}} \pm V_{\omega_{2}}\right]$
Work done per second on the vane by the jut
$=$ Force x Distance per second in the direction of force.

$$
=F_{x} \times u
$$

$$
\begin{equation*}
=f a V_{r_{1}}\left[v_{w_{1}} \pm V_{o_{2}}\right] \times u \tag{4}
\end{equation*}
$$

\therefore Work done per second per unit weight of fluid striking per

$$
\begin{aligned}
\text { second } & =\frac{\rho_{a} Y_{r_{1}}\left[V_{w,} \pm V_{w 2}\right] \times u}{\text { weight of fluid strike kng/s }} \frac{\mathrm{Nm} / \mathrm{s}}{\mathrm{~N} / \mathrm{s}} \\
& =\frac{\rho_{a} V_{\pi_{1}}\left[V_{w_{1}} \pm V_{w 2}\right] \times u}{g \times \rho_{a} V_{\pi_{1}}} \frac{\mathrm{~N}}{\mathrm{~N}}
\end{aligned}
$$

$$
\begin{equation*}
=\frac{1}{g}\left[v_{\omega_{1}} \pm v_{\omega_{2}}\right] \times u \cdot \mathrm{Nm} / \mathrm{N} \tag{5}
\end{equation*}
$$

work done $/ \mathrm{sec}$ per unit mass of fluid stroking per second

$$
\begin{align*}
& =\frac{\rho_{a} v_{r_{1}}\left[v_{\omega_{1}} \pm v_{w_{2}}\right] \times u}{\text { Mass of bluid striking } / \mathrm{s}} \frac{\mathrm{Nm} / \mathrm{s}}{\mathrm{~kg} / \mathrm{s}} \\
& =\frac{\rho a V_{r_{1}}\left[V_{\omega_{1}}+v_{\omega_{2}}\right] \times u}{f a V_{r_{1}}} \frac{\mathrm{Nm}_{\mathrm{m}}}{\mathrm{~kg}} \\
& =\left(V_{\omega_{1}}+V_{\omega_{2}}\right) \times u_{0} \quad \mathrm{Nm}_{\mathrm{mg}} \tag{b}
\end{align*}
$$

(3) Efficiency of JET $\underbrace{7}$

The work done by the vet on the vane given by equation (4) is the output of the jet where as the initial kinetic energy of the vet is the input. Hence, the efficiency (\because) of the vet is expressed as

$$
\begin{aligned}
I=\frac{\text { Output }}{\text { Input }} & =\frac{\text { Work done per second on the vane }}{\text { Initial kinetic energy per second of the jet }} \\
& =\frac{f a v_{\pi_{1}}\left[v_{\omega_{1}} \pm v_{\omega_{2}}\right] \times u}{1 / 2 m v_{1}^{2}}
\end{aligned}
$$

where $m=$ mass of the fluid pere second in the jet $=f a v$, $V_{1}=$ initial velocity of vet

$$
\begin{equation*}
\therefore q=\frac{f a v_{r_{1}}\left[v_{w_{1}}+v_{w_{2}}\right] \times u}{1 / 2\left(f a v_{1}\right) \times v_{1}^{2}} \tag{7}
\end{equation*}
$$

MODEL SET QUESTION PAPER FOR PRACTICE SET-1			
Semester:4 ${ }^{\text {th }}$	Branch:Mechanical Engineering		
Full Marks- 80	Subject Name: Fluid Mechanics		
	Answer any five Questions including Q No.1\& 2 Figures in the right hand margin indicates marks		
	Time- 3 Hrs		

1.		Answer All questions	2×10
	a.	Define Mass Density. What is its unit?	
	b.	Define the term Kinematic Viscosity. State its SI unit.	
	c.	State Archimede's Principle.	
	d.	What do you mean by Surface Tension? State the expression for Surface Tension on a hollow bubble.	
	e.	What is mean by Vaccum pressure and Atmospheric pressure?	
	f.	Define Buoyancy.	
	g.	What do you mean by Metacentre?	
	h.	Define uniform and non-uniform flow.	
	i.	Define Pitot Tube.	
	j.	What is meant by Total Energy Line?	
2.		Answer Any Six Questions	5×6
	a.	Derive the expression for Capillarity Fall.	
	b.	Derive the expression for rate of flow through venturimeter.	
	c.	Classify Notch into its different categories.	
	d.	What are the Different Losses of energy in pipes? State the Darcy Weisbach Formula for head loss.	
	e.	The diameter of a pipe at the section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through the pipe if the velocity of water flowing through the pipe at section 1 is 5 cm . Find the velocity at section 2 .	
	f.	A plate 0.025 mm distant from a fixed plate, moves at $60 \mathrm{~cm} / \mathrm{s}$ and requires a force of $2 \mathrm{~N} / \mathrm{m}^{2}$ to maintain this speed. Determine the viscosity of fluid between the plates.	
	g.	Write a short note on "Differential Manometers"	
3		Derive the force exerted by a jet in the direction of the jet on a moving unsymmetric curved plate when the jet strikes tangentially at one end of the plate. Also derive the work done per second on the plate.	10
4		Define Orifice. Derive the expression for flow through orifice. A sharp edged orifice of 5 cm diameter discharges water under a head of 4.5 m . Determine the coefficient of discharge if the measured rate of flow is $0.0122 \mathrm{~m}^{3} / \mathrm{s}$.	10

5		State and derive the Bernoulli's theorem for steady flow for an incompressible fluid. What are the assumptions made in the derivation of Bernoulli's equation?	10
6		A rectangular plane surface is 2m wide and 3m deep. It lies in vertical plane in water. Determine the total pressure and position of center of pressure on the plane surface when its upper edge is horizontal and I. Coincides with the water surface. II. 2.5m below the free water surface.	10
7	A jet of water 40mm diameter moving with a velocity of $120 \mathrm{~m} / \mathrm{s}$ impinging on a series of vanes moving with a velocity of $5 \mathrm{~m} / \mathrm{s}$. Find the force exerted, workdone and efficiency.	10	

MODEL SET QUESTION PAPER FOR PRACTICE SET-2			
Semester: $4^{\text {th }}$	Branch:Mechanical Engineering		
Full Marks- 80	Subject Name: Fluid Mechanics		
	Answer any five Questions including Q No.1\& 2 Figures in the right hand margin indicates marks		

1.		Answer All questions	2×10
	a.	Define Weight Density. What is its unit?	
	b.	What do you understand by Continuity Equation?	
	c.	What do you mean by Capillarity?	
	d.	What do you mean by Surface Tension? State the expression for Surface Tension on a liquid jet.	
	e.	What is mean by Absolute pressure and Gauge pressure?	
	f.	What are the assumptions made in the derivation of Bernoulli's equation?	
	g.	What do you mean by Metacentric Height?	
	h.	Define steady and unsteady flow.	
	i.	Define Orifice.	
	J.	What is meant by Hydraulic Gradient Line?	
2.		Answer Any Six Questions	5×6
	a.	Derive the expression for Capillarity Rise.	
	b.	Derive the pressure expression for a inverted differential U-Tube Manometer.	
	c.	Define Pitot tube. Derive the expression of velocity at a point using Pitot Tube.	
	d.	Derive the discharge over a Rectangular Notch.	
	e.	What are the guage pressure and absolute pressureat a point 3 m below the free surface of a liquid having a density of $1.53 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. Given that the atmospheric pressue is 750 mm of mercury, the specific gravity of mercury is 13.6 and density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.	
	f.	A solid cylinder of diameter 4 m has a height of 3 m . Find the metacentric height of the cylinder when it is floating in water with its axis vertical. The specific gravity of the cylinder is 0.6 .	
	g.	State and derive the Pascal's Law.	
3		Derive the following for a moving unsymmetric curved plate when the jet strikes tangentially at one end of the plate: I. force exerted by a jet in the direction of the jet. II. work done per second per unit weight of fluid on the plate. III. Efficiency of the jet.	10

4		State the Darcy Weisbach Formula and Chezy's Formula for loss of head. Water flows through a pipe of 200mm in diameter and 60m long with a velocity of 2.5m/s. find the head loss due to friction using: I. \quadDarcy's formula where $\mathrm{f}=0.005$ II. Chezy's formula where c $=55$	10
5	An oil of specific gravity 0.7 is flowing through a pipe of diameter 300mm at the late of 5001/s. find the head loss due to friction and power required to maintain the flow foe a length of 1000 m. Take kinematic viscocity as 0.29 stroke	10	
6	A pipeline, 300mm in diameter and 3200m long is used to pump up 50 kg/s of an oil whose density is 950 kg $/ \mathrm{m}^{3}$ and whose kinematic viscosity is 2.1 stokes. The centre of the pipeline at the upper end is 40m above than that at the lower end. The discharge at the upper end is atmospheric. Find the pressure at the lower end and draw the hydraulic gradient line (HGL) and the total energy line (TEL).	10	
7	State and derive the Bernoulli's theorem for steady flow for an incompressible fluid. What are the assumptions made in the derivation of Bernoulli's equation?	10	

MODEL SET QUESTION PAPER FOR PRACTICE SET-3			
Semester:4 ${ }^{\text {th }}$	Branch:Mechanical Engineering		
Full Marks- 80	Subject Name: Fluid Mechanics		
	Answer any five Questions including Q No.1\& 2 Figures in the right hand margin indicates marks		
	Time- 3 Hrs		

1.		Answer All questions	2×10
	a.	Define Specific Gravity. What is its unit?	
	b.	Define the term Dynamic Viscosity. State its SI unit.	
	c.	What is mean by Rate of Flow or Discharge?	
	d.	What do you mean by Surface Tension? State the expression for Surface Tension on a water bubble.	
	e.	State the Bernoulli's theorem for steady flow for an incompressible fluid.	
	f.	Define centre of pressure.	
	g.	What do you mean by Bouyancy?	
	h.	Define Laminar and Turbulent flow.	
	i.	Define Venturimeter.	State the Chezy's Formula for loss of head.
		Answer Any Six Questions	
2.		a.	State and derive the Pascal's Law.

5		Define Metacenter and Metacentric Height. Derive the expression for Metacentric Height.	10
6	Derive the pressure expression of a simple U-Tube manometer. The right limb of a simple U-tube manometer containing mercury is open to the atmosphere while the left limb is connected to a pipe in which a fluid of specific gravity 0.9 is flowing. The centre of the pipe is 12cm below the level of mercury in the right limb. Find the pressure of fluid in the two limbs if the difference of mercury level in the two limbs is 20cm.	10	
7	A jet of water of diamter 10cm strikes a flat plate normally with a velocity of $15 \mathrm{~m} / \mathrm{s}$. the plate is moving with the velocity of $6 \mathrm{~m} / \mathrm{s}$ in the direction of the jet and away from the jet. Find: I. The force exerted by the jet on the plate. II. Work done by the jet on the plate per second.	10	

